
September 11, 2025

New Zealand Informatics Competition 2025
Round Three

Editorial by Zalan V

1

Contents
Introduction . 2
Resources . 2
Trek 2 . 3
Mural . 4
Duck Tape . 5
Mischievous Gnomes . 7
Sleep Gardening . 8
Big O Complexity . 11
Additional Example Solutions . 12

Introduction
The solutions to this round of NZIC problems are discussed in detail below. In a few questions we
may refer to the Big O complexity of a solution, e.g. 𝑂(𝑁). There is an explanation of Big O
complexity at the end of this document.

Resources
Ever wondered what the error messages mean?

https://www.nzoi.org.nz/nzic/resources/understanding-judge-feedback.pdf

Read about how the server marking works:

https://www.nzoi.org.nz/nzic/resources/how-judging-works-python3.pdf

Ever wondered why your submission scored zero?

https://www.nzoi.org.nz/nzic/resources/why-did-i-score-zero.pdf

See our list of other useful resources here:

https://www.nzoi.org.nz/nzic/resources

2

https://www.nzoi.org.nz/nzic/resources/understanding-judge-feedback.pdf
https://www.nzoi.org.nz/nzic/resources/how-judging-works-python3.pdf
https://www.nzoi.org.nz/nzic/resources/why-did-i-score-zero.pdf
https://www.nzoi.org.nz/nzic/resources

Trek 2
Problem authored by Anatol C
https://train.nzoi.org.nz/problems/1565

Subtask 1
In this subtask there is only a single mountain. So in any case, the highest and the lowest mountain
we visit are the same mountain — so the difference in their heights is zero. Hence, the answer is
always zero.

Python Solution
print(0)

Ruby Solution
p 0

Subtask 2
In this subtask there are exactly two mountains. It is always optimal to climb both mountains (since
otherwise the max enjoyment would be zero) so the answer is the difference in height between the
two mountains.

Python Solution
N = int(input())
h1 = int(input())
h2 = int(input())
print(abs(h1 - h2))

Subtask 3
In this subtask there are at most 1, 000 mountains. We can try every possible pair of mountains to the
be tallest and shortest along our hike. The overall time complexity of this solution is 𝑂(𝑁2).

Python Solution
N = int(input())
heights = [int(input()) for _ in range(N)]
max_enjoyment = 0
for i in range(N):
 for j in range(N):
 max_enjoyment = max(max_enjoyment, abs(heights[i] - heights[j]))
print(max_enjoyment)

Full Solution
We can observe that one optimal solution is to climb all the mountains. Thus, we simply need to find
the tallest and shortest mountain. The overall time complexity of this solution is 𝑂(𝑁).

Python Solution
N = int(input())
heights = [int(input()) for _ in range(N)]
print(max(heights) - min(heights))

C++ Solution
The code for this solution can be found at the end of this document .

3

https://train.nzoi.org.nz/problems/1565

Mural
Problem authored by Zalan V
https://train.nzoi.org.nz/problems/1538

Subtask 1
In this subtask 𝑁 = 2 so there are exactly two segments in the mural and two cans of spray paint.
We can try using the first can for the first segment and the second can for the second segment or
vice versa.

Python Solution
N = int(input())
mural = list(map(int, input().split()))
paint = list(map(int, input().split()))
min_inaccuracy = min(
 abs(mural[0] - paint[0]) + abs(mural[1] - paint[1]),
 abs(mural[0] - paint[1]) + abs(mural[1] - paint[0])
)
print(min_inaccuracy)

Subtask 2
In this subtask 𝑁 ≤ 1, 000. We can observe that it is optimal to assign the smallest colour of paint
to the smallest coloured segment, the second smallest to the second smallest, and so on. We can sort
the colours in the mural and repeatedly remove the smallest coloured can of spray paint. The time
complexity of this solution is 𝑂(𝑁2).

Python Solution
The code for this solution can be found at the end of this document .

Full Solution
We can optimise the solution to Subtask 2 by sorting both the mural colours and the paint colours and
pairing them up. The time complexity of this solution is 𝑂(𝑁).

Python Solution
N = int(input())
mural = list(map(int, input().split()))
paint = list(map(int, input().split()))
mural.sort()
paint.sort()

total_inaccuracy = 0
for i in range(N):
 total_inaccuracy += abs(mural[i] - paint[i])
print(total_inaccuracy)

4

https://train.nzoi.org.nz/problems/1538

Duck Tape
Problem authored by Thomas M
https://train.nzoi.org.nz/problems/1522

Subtask 1
In this subtask 𝑁 ≤ 500 and all positions are in the inclusive range 0 to 500. Thus, we can represent
the box as an array of length 501. We can loop through all the positions that each piece of tape covers,
and mark them as covered. Then, we can check if all positions between 𝑆 and 𝐸 are covered. The
overall time complexity of this solution is 𝑂(𝑁 × 𝐿) where 𝐿 is the total length of the box.

Python Solution
N, S, E = map(int, input().split())

covered = [False] * 501
for _ in range(N):
 s, e = map(int, input().split())
 for i in range(s, e + 1):
 covered[i] = True

if all(covered[S:E+1]):
 print(1)
else:
 print(0)

Subtask 2
In this subtask 𝑁 ≤ 500 and the positions are in the range −500 to 500. We can solve this subtask
similarly to Subtask 1, but need to be able to handle negative positions, which we can do by adding
500 to all positions so that they become non-negative, and also increasing the size of our array so that
it can handle the larger range of positions. The overall time complexity of this solution is 𝑂(𝑁 × 𝐿)
where 𝐿 is the total length of the box.

Python Solution
N, S, E = map(int, input().split())
S += 500
E += 500

covered = [False] * 1001
for _ in range(N):
 s, e = map(int, input().split())
 s += 500
 e += 500
 for i in range(s, e + 1):
 covered[i] = True

if all(covered[S:E+1]):
 print(1)
else:
 print(0)

Subtask 3
In this subtask 𝑁 ≤ 500. To solve this subtask we can use a technique called coordinate compression
to extend the solution to Subtask 1. The idea of coordinate compression is to take some set of 𝑥 integers

5

https://train.nzoi.org.nz/problems/1522

and map them into the range [0,x) while maintaining the order of the integers. For example, we can
compress {17, 4, 6, 2} → {3, 1, 2, 0}.

We consider that for each piece of tape the “important” points are (𝑠𝑖 − 1), 𝑠𝑖, 𝑒𝑖, (𝑒𝑖 + 1), since
all points between 𝑠𝑖 and 𝑒𝑖 get covered. Furthermore, 𝑆 and 𝐸 are important points. We can use
coordinate compression on these important points to give us an array of length at most 4𝑁 + 2. We
can adapt the solution to Subtask 1 to use the compressed coordinates. The overall time complexity of
this solution is 𝑂(𝑁2).

Python Solution
N, S, E = map(int, input().split())
tapes = [tuple(map(int, input().split())) for _ in range(N)]

positions = set((S, E))
for s, e in tapes:
 positions.update((s - 1, s, e, e + 1))
positions = sorted(positions) # Convert set to sorted list

compressed_positions = {}
for i, pos in enumerate(positions):
 compressed_positions[pos] = i

covered = [False] * len(positions)
for s, e in tapes:
 for i in range(compressed_positions[s], compressed_positions[e] + 1):
 covered[i] = True

if all(covered[compressed_positions[S]:compressed_positions[E]+1]):
 print(1)
else:
 print(0)

Full Solution
For the full solution we can first sort all pairs of (𝑠𝑖, 𝑒𝑖), and iterate over them while keeping track of
the rightmost covered point, and stop when we encounter a gap. The overall time complexity of this
solution is 𝑂(𝑁 log𝑁).

Python Solution
N, S, E = map(int, input().split())
tapes = [tuple(map(int, input().split())) for _ in range(N)]
tapes.sort()

end = S - 1
for s, e in tapes:
 if end + 1 < s: break
 end = max(end, e)

if E <= end:
 print(1)
else:
 print(0)

C++ Solution
The code for this solution can be found at the end of this document .

6

Mischievous Gnomes
Problem authored by Zalan V
https://train.nzoi.org.nz/problems/1518

Subtask 1
In this subtask there are at most 1, 000 clearings and the clearings are arranged in a line from clearing
0 to clearing 𝑁 − 1. To solve this subtask we first need to calculate the distance of each clearing from
clearing 0. We can calculate this using a prefix sum. Then, for each group of gnomes we can loop over
every clearing, and if it is within distance 𝑟𝑖 of clearing ℎ𝑖 then we mark the clearing as annoying.

We can observe that to reach clearing 𝑁 − 1 from clearing 0 we need to walk through every clearing,
so the number of annoying clearings that we need to walk through is the total number of annoying
clearings, and the distance we need to walk is simply the distance of clearing 𝑁 − 1 from clearing 0.
The overall time complexity of this solution is 𝑂(𝑁2).

Python Solution
The code for this solution can be found at the end of this document .

Subtask 2
In this subtask there are no gnomes. Thus, we simply need to find the length of the shortest path from
clearing 0 to clearing 𝑁 − 1. We can use Dijkstra’s Algorithm to solve this subtask. The overall time
complexity of this solution is 𝑂(𝑀 log𝑀).

Python Solution
The code for this solution can be found at the end of this document .

Subtask 3
In this subtask none of the gnomes can leave their home clearing. Thus, the annoying clearings will
simply be the home clearings. We will extend the Subtask 2 solution to solve this subtask. As it turns
out, we can use pairs of (number of annoying clearings, distance) as distances in Dijkstra’s algorithm.
We compare two pairs by the number of annoying clearings, with ties broken by distance. The overall
time complexity of this solution is 𝑂(𝑀 log𝑀).

Python Solution
The code for this solution can be found at the end of this document .

Full Solution
For the full solution, we can use a multi-source Dijkstra traversal where we maximise the remaining
distance that we can travel from each clearing to find all the annoying clearings in 𝑂(𝑀 log𝑀). We
can then use the Dijkstra traversal from the Subtask 3 solution to calculate the minimum number of
annoying clearings we must walk through, and the minimum distance. The overall time complexity of
this solution is 𝑂(𝑀 log𝑀).

C++ Solution
The code for this solution can be found at the end of this document .

7

https://train.nzoi.org.nz/problems/1518

Sleep Gardening
Problem authored by Zalan V
https://train.nzoi.org.nz/problems/1363

Subtask 1
In this subtask 𝑀 = 1 and 𝐾 = 1 so there is exactly one tree, and we can perform the sapling planting
operation a single time. There are three possible ways to apply the operation: plant saplings to the left
of the tree, plant saplings to the right of the tree, or remove the tree and plant saplings in all segments.

Python Solution
N, M, K = map(int, input().split())
p, h = map(int, input().split())
print(max(h + (p - 1), h + (N - p), N))

Subtask 2
In this subtask 𝑁 ≤ 100 and 𝐾 = 1. We can represent the garden as an array, and calculate the result
of applying the operation to every single subarray. There are 𝑂(𝑁2) subarrays, and we can calculate
the heights of the tree in each given subarray in 𝑂(𝑁). This makes the overall time complexity of this
solution 𝑂(𝑁3).

Python Solution
N, M, K = map(int, input().split())
heights = [0] * N
for _ in range(M):
 p, h = map(int, input().split())
 heights[p - 1] = h

ans = sum(heights)
for i in range(N):
 for j in range(i, N):
 ans = max(ans, sum(heights[:i]) + (j - i + 1) + sum(heights[j + 1:]))
print(ans)

Subtask 3
In this subtask 𝐾 = 1. We can think of the total achievable foliage after applying the operation as the
sum of the initial foliage and the foliage gained from applying the operation. We can trivially calculate
the initial foliage, so it remains to calculate the maximum possible foliage gain. We can observe that
the foliage gained from an empty section of the garden is simply the length of the section, and the
foliage gained from removing a tree is 1 − ℎ𝑖.

We can now reframe the problem as finding the maximum possible subarray sum over these values.
We can use Kadane’s Algorithm to find the maximum possible subarray sum over this new array.
The overall time complexity of this solution is 𝑂(𝑁).

Python Solution
The code for this solution can be found at the end of this document .

Subtask 4
In this subtask 𝐾 ≤ 50. We can use a dynamic programming approach to solve this subtask where our
DP state will be (index of tree, operations remaining). Let 𝑉 be the array we get from transforming
each empty section of the garden into its length, and each tree into the value 1 − ℎ𝑖.

8

https://train.nzoi.org.nz/problems/1363

We define the base cases:

dpinc(0, 𝑗) = max{
𝑉0 if 𝑗 < 𝐾
0 if 𝑗 = 𝐾

dpexc(0, 𝑗) = 0

Then, the recurrences:

dpinc(𝑖, 𝑗) = 𝑉𝑖 +max{
dpinc(𝑖 − 1, 𝑗)
dpexc(𝑖 − 1, 𝑗)

dpexc(𝑖, 𝑗) = max{
dpinc(𝑖 − 1, 𝑗 − 1)
dpexc(𝑖 − 1, 𝑗)

Our answer will then be dp(𝑁 − 1,𝐾) plus the sum of all tree heights. The overall time complexity of
this solution is 𝑂(𝑁 ×𝐾). It should be noted that we can easily apply the sliding window DP opti-
misation technique to reduce the memory usage of this algorithm from 𝑂(𝑁 ×𝐾) to 𝑂(𝑁), although
a solution without this optimisation may still pass depending on the language and implementation.

Python Solution
The code for this solution can be found at the end of this document .

Full Solution
We will continue to use the idea from Subtask 4 of transforming the garden into the array 𝑉 of the gain
from applying an operation in each section. The problem that we are solving is formally known as the
𝐾-disjoint subarray sum problem, and there are many different algorithms that can be used to solve
this problem. We will discuss two approaches here: a greedy approach, and a dynamic programming
approach.

Approach 1 (Greedy)
We first consider that we can merge together adjacent negative values in 𝑉 since it will never be
optimal to replace a single tree out of a group of adjacent trees. We can also observe that it will never
be optimal to replace a tree at the edge of the garden with a sapling. Thus, we can transform 𝑉 into
an alternating sequence 𝑆 of positive and negative elements, which starts and ends with a positive
element.

Since 𝑆 both starts and ends with a positive element, its length must be odd, so we can write |𝑆| =
2𝑥 + 1 for some integer 𝑥. We can observe that the sum of the positive elements of 𝑆 represent the
maximum sum of 𝑥 + 1 subarrays, that is, the maximum achievable sum from applying the operation
𝑥 + 1 times.

We can think of 𝑆 as being partitioned into elements that we take and don’t take. The elements that we
take are the positive ones, and the elements that we don’t take are the negative ones. So we can think of
𝑆 as (take, don’t take, …, take). We will now consider how we can transform 𝑆 from a solution for 𝑥 +
1 subarrays into a solution for 𝑥 subarrays. There are three possible cases: we can either merge three
consecutive elements together, we can delete the first two elements, or delete the last two elements.

It can be shown that it is optimal to find the element with the smallest absolute value and either merge
it with its two neighbours, or to remove it and its neighbour if it is one of the endpoints. We repeat
this until the length of 𝑆 is 2 ×𝐾 − 1.

9

We can use a set of elements sorted by index, and a set of elements sorted by absolute value to
perform these operations efficiently in 𝑂(log𝑀). The overall time complexity of this solution is then
𝑂(𝑀 log𝑀).

C++ Solution
The code for this solution can be found at the end of this document .

Approach 2 (Dynamic Programming)
Another approach that we can use to solve the problem is a DP optimisation technique known as
Lagrangian Relaxation (sometimes known as Aliens Trick). You can read more about this technique
here.

Python Solution
N, M, K = map(int, input().split())
tot, last = 0, 0
val = []
for i in range(M):
 p, h = map(int, input().split())
 tot += h
 val.append(p - last - 1)
 val.append(1 - h)
 last = p
val.append(N - last)

def solve(cost):
 inc, exc = (val[0] - cost, 1), (0, 0)
 for i in range(1, len(val)):
 inc, exc = max((exc[0] + val[i] - cost, exc[1] + 1), (inc[0] + val[i],
inc[1])), max(exc, inc)
 return max(inc, exc)

low, upp = 0, 10**15
while low < upp:
 mid = (low + upp + 1) // 2
 res = solve(mid)
 if res[1] >= K: low = mid
 else: upp = mid - 1
print(solve(low)[0] + K * low + tot)

C++ Solution
The code for this solution can be found at the end of this document .

10

https://usaco.guide/adv/lagrange?lang=cpp

Big O Complexity
Computer scientists like to compare programs using something called Big O notation. This works by
choosing a parameter, usually one of the inputs, and seeing what happens as this parameter increases
in value. For example, let’s say we have a list 𝑁 items long. We often call the measured parameter 𝑁 .
For example, a list of length 𝑁 .

In contests, problems are often designed with time or memory constraints to make you think of a more
efficient algorithm. You can estimate this based on the problem’s constraints. It’s often reasonable to
assume a computer can perform around 100 million (100,000,000) operations per second. For example,
if the problem specifies a time limit of 1 second and an input of 𝑁 as large as 100,000, then you know
that an 𝑂(𝑁2) algorithm might be too slow for large 𝑁 since 100,0002 = 10,000,000,000, or 10 billion
operations.

Time Complexity
The time taken by a program can be estimated by the number of processor operations. For example,
an addition 𝑎 + 𝑏 or a comparison 𝑎 < 𝑏 is one operation.

𝑂(1) time means that the number of operations a computer performs does not increase as 𝑁 increases
(i.e. does not depend on 𝑁). For example, say you have a program containing a list of 𝑁 items and
want to access the item at the 𝑖-th index. Usually, the computer will simply access the corresponding
location in memory. There might be a few calculations to work out which location in memory the
entry 𝑖 corresponds to, but these will take the same amount of computation regardless of 𝑁 . Note
that time complexity does not account for constant factors. For example, if we doubled the number of
calculations used to get each item in the list, the time complexity is still 𝑂(1) because it is the same
for all list lengths. You can’t get a better algorithmic complexity than constant time.

𝑂(log𝑁) time suggests the program takes a constant number of extra operations every time 𝑁 doubles
in size. For example, finding a number in a sorted list using binary search might take 3 operations
when 𝑁 = 8, but it will only take one extra operation if we double 𝑁 to 16. As far as efficiency goes,
this is pretty good, since 𝑁 generally has to get very, very large before a computer starts to struggle.

𝑂(𝑁) time means you have an algorithm where the number of operations is directly proportional to
𝑁 . For example, a maximum finding algorithm max() will need to compare against every item in a
list of length 𝑁 to confirm you have indeed found the maximum. Usually, if you have one loop that
iterates 𝑁 times your algorithm is 𝑂(𝑁).

𝑂(𝑁2) time means the number of operations is proportional to 𝑁2 . For example, suppose you had an
algorithm which compared every item in a list against every other item to find similar items. For a list
of 𝑁 items, each item has to check against the remaining 𝑁 − 1 items. In total, 𝑁(𝑁 − 1) checks are
done. This expands to 𝑁2 −𝑁 . For Big O, we always take the most significant term as the dominating
factor, which gives 𝑂(𝑁2). This is generally not great for large values of 𝑁 , which can take a very
long time to compute. As a general rule of thumb in contests, 𝑂(𝑁2) algorithms are only useful for
input sizes of 𝑁 ≲ 10,000. Usually, if you have a nested loop in your program (loop inside a loop) then
your solution is 𝑂(𝑁2) if both these loops run about 𝑁 times.

11

Additional Example Solutions
Trek 2 Full Solution (C++)
#include <bits/stdc++.h>
using namespace std;

int main() {
 int N;
 cin >> N;

 vector<int> heights(N);
 for (int i = 0; i < N; ++i) cin >> heights[i];

 auto ans = minmax_element(heights.begin(), heights.end());
 cout << *ans.second - *ans.first << "\n";

 return 0;
}

Mural Subtask 2 Solution (Python)
N = int(input())
mural = list(map(int, input().split()))
paint = list(map(int, input().split()))
mural.sort()

total_inaccuracy = 0
for colour in mural:
 paint_colour = min(paint)
 paint.remove(paint_colour)
 total_inaccuracy += abs(colour - paint_colour)
print(total_inaccuracy)

Duck Tape Full Solution (C++)
#include <bits/stdc++.h>
using namespace std;

int main() {
 int N, S, E;
 cin >> N >> S >> E;

 vector<pair<int, int>> tapes(N);
 for (int i = 0; i < N; ++i) {
 cin >> tapes[i].first >> tapes[i].second;
 }
 sort(tapes.begin(), tapes.end());

 int end = S - 1;
 for (auto [s, e] : tapes) {
 if (end + 1 < s) break;
 end = max(end, e);
 }

 if (E <= end) cout << "1\n";
 else cout << "0\n";

12

 return 0;
}

Mischievous Gnomes Subtask 1 Solution (Python)
N, M, G = map(int, input().split())
distances = [0] * N
for _ in range(M):
 a, b, c = map(int, input().split())
 distances[b] = distances[a] + c

annoying = [False] * N
for _ in range(G):
 h, r = map(int, input().split())
 for i in range(N):
 if distances[h] - r <= distances[i] <= distances[h] + r:
 annoying[i] = True

print(sum(annoying))
print(distances[N - 1])

Mischievous Gnomes Subtask 2 Solution (Python)
import heapq

N, M, G = map(int, input().split())
adj = [[] for _ in range(N)]
distances = [0] * N
for _ in range(M):
 a, b, c = map(int, input().split())
 adj[a].append((b, c))
 adj[b].append((a, c))

best_distances = [10**10] * N
best_distances[0] = 0
distance_queue = [(0, 0)]
while distance_queue:
 dist, node = heapq.heappop(distance_queue)
 if node == N - 1:
 print(0)
 print(dist)
 break
 if best_distances[node] < dist: continue
 for child, child_dist in adj[node]:
 new_child_dist = dist + child_dist
 if new_child_dist < best_distances[child]:
 best_distances[child] = new_child_dist
 heapq.heappush(distance_queue, (new_child_dist, child))

Mischievous Gnomes Subtask 3 Solution (Python)
import heapq

N, M, G = map(int, input().split())
adj = [[] for _ in range(N)]
distances = [0] * N
for _ in range(M):
 a, b, c = map(int, input().split())
 adj[a].append((b, c))

13

 adj[b].append((a, c))

annoying = [False] * N
for _ in range(G):
 h, r = map(int, input().split())
 annoying[h] = True

best_distances = [(10**10, 10**10)] * N
best_distances[0] = (int(annoying[0]), 0)
distance_queue = [((int(annoying[0]), 0), 0)]
while distance_queue:
 dist, node = heapq.heappop(distance_queue)
 if node == N - 1:
 print(dist[0])
 print(dist[1])
 break
 if best_distances[node] < dist: continue
 for child, child_dist in adj[node]:
 new_child_dist = (dist[0] + annoying[child], dist[1] + child_dist)
 if new_child_dist < best_distances[child]:
 best_distances[child] = new_child_dist
 heapq.heappush(distance_queue, (new_child_dist, child))

Mischievous Gnomes Full Solution (C++)
#include <bits/stdc++.h>
using namespace std;
typedef pair<int, int> ii;
typedef vector<int> vi;

int main() {
 cin.tie(0);
 ios_base::sync_with_stdio(false);

 int N, M, G;
 cin >> N >> M >> G;

 vector<vector<ii>> adj(N);
 for (int i = 0; i < M; ++i) {
 int a, b, c;
 cin >> a >> b >> c;
 adj[a].push_back({b, c});
 adj[b].push_back({a, c});
 }

 vi remainingDist(N, -1);
 priority_queue<ii> que1;
 vector<bool> annoying(N);
 for (int i = 0; i < G; ++i) {
 int h, r;
 cin >> h >> r;
 remainingDist[h] = r;
 que1.push({r, h});
 }
 while (que1.size()) {
 auto [r, n] = que1.top();
 que1.pop();

14

 if (remainingDist[n] < r) continue;
 annoying[n] = true;
 for (auto [c, d] : adj[n]) {
 int nr = r - d;
 if (nr > remainingDist[c]) {
 remainingDist[c] = nr;
 que1.push({nr, c});
 }
 }
 }

 vector<ii> dist(N, {INT_MAX / 2, 0});
 priority_queue<pair<ii, int>, vector<pair<ii, int>>, greater<>> que2;
 que2.push({{0, 0}, 0});
 while (que2.size()) {
 auto [d, n] = que2.top();
 que2.pop();
 if (dist[n] < d) continue;
 d.first += annoying[n];
 if (n == N - 1) {
 cout << d.first << endl;
 cout << d.second << endl;
 break;
 }
 for (auto [c, cd] : adj[n]) {
 ii nd = {d.first, d.second + cd};
 if (nd < dist[c]) {
 dist[c] = nd;
 que2.push({nd, c});
 }
 }
 }
 return 0;
}

Sleep Gardening Subtask 3 Solution (Python)
N, M, K = map(int, input().split())

total_heights = 0
sections = []
last_pos = 0
for i in range(M):
 p, h = map(int, input().split())
 total_heights += h
 sections.append(p - last_pos - 1)
 sections.append(1 - h)
 last_pos = p
sections.append(N - last_pos)

min_prefix = 0
prefix_sum = 0
max_subarray = 0
for x in sections:
 prefix_sum += x
 min_prefix = min(min_prefix, prefix_sum)

15

 max_subarray = max(max_subarray, prefix_sum - min_prefix)
print(total_heights + max_subarray)

Sleep Gardening Subtask 4 Solution (C++)
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;

int main() {
 cin.tie(0);
 ios_base::sync_with_stdio(false);

 int N, M, K;
 cin >> N >> M >> K;

 vector<ll> sections;
 ll last_pos = 0;
 ll total_heights = 0;
 for (int i = 0; i < M; ++i) {
 int a, b;
 cin >> a >> b;
 total_heights += b;
 sections.push_back(a - last_pos - 1);
 sections.push_back(1 - b);
 last_pos = a;
 }
 sections.push_back(N - last_pos);

 int L = sections.size();
 vector<vector<ll>> dp_inc(2, vector<ll>(K + 1)), dp_exc(2, vector<ll>(K + 1));
 for (int i = 0; i < K; ++i) dp_inc[0][i] = sections[0];
 for (int i = 1; i < L; ++i) {
 int idx = i & 1;
 for (int j = 1; j <= K; ++j) dp_exc[idx][j] = max(dp_exc[idx ^ 1][j],
dp_inc[idx ^ 1][j - 1]);
 for (int j = 0; j < K; ++j) dp_inc[idx][j] = sections[i] + max(dp_inc[idx ^
1][j], dp_exc[idx ^ 1][j]);
 }
 ll ans = 0;
 for (int i = 0; i < K + 1; ++i) ans = max(ans, max(dp_inc[(L - 1) & 1][i],
dp_exc[(L - 1) & 1][i]));

 cout << ans + total_heights << endl;

 return 0;
}

Sleep Gardening Full Solution 1 (C++)
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<ll, ll> pll;

int main() {
 cin.tie(0);
 ios_base::sync_with_stdio(false);

16

 ll N, M, K;
 cin >> N >> M >> K;

 vector<ll> val;
 ll last_pos = 0, total_heights = 0;
 for (int i = 0; i < M; ++i) {
 ll p, h;
 cin >> p >> h;
 total_heights += h;
 if (last_pos < p - 1) {
 val.push_back(p - last_pos - 1);
 val.push_back(1 - h);
 }
 else if (val.size()) val.back() += 1 - h;
 last_pos = p;
 }
 if (last_pos < N) val.push_back(N - last_pos);
 else if (val.size()) val.pop_back();

 if (val.empty()) {
 cout << total_heights << endl;
 return 0;
 }

 // Use a custom comparator to sort the {position, value} pairs by absolute value
 struct cmp {
 bool operator() (pll a, pll b) const {
 if (abs(a.second) != abs(b.second)) return abs(a.second) < abs(b.second);
 return a.first < b.first;
 };
 };
 set<pll, cmp> by_abs;
 set<pll> by_idx;

 for (int i = 0; i < val.size(); ++i) {
 by_idx.insert({i, val[i]});
 by_abs.insert({i, val[i]});
 }

 while (by_abs.size() / 2 >= K) {
 auto a = *by_abs.begin();
 auto it = by_idx.find(a);

 if (it == by_idx.begin()) {
 by_abs.erase(*next(it));
 by_idx.erase(next(it));
 by_abs.erase(*it);
 by_idx.erase(it);
 }
 else if (it == prev(by_idx.end())) {
 by_abs.erase(*prev(it));
 by_idx.erase(prev(it));
 by_abs.erase(*it);
 by_idx.erase(it);
 }

17

 else {
 a.second += next(it)->second + prev(it)->second;

 by_abs.erase(*next(it));
 by_idx.erase(next(it));
 by_abs.erase(*prev(it));
 by_idx.erase(prev(it));
 by_abs.erase(*it);
 by_idx.erase(it);

 by_abs.insert(a);
 by_idx.insert(a);
 }
 }

 ll ans = 0;
 for (auto [i, v] : by_idx) {
 if (v > 0) ans += v;
 }
 cout << total_heights + ans << "\n";

 return 0;
}

Sleep Gardening Full Solution 2 (C++)
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<ll, ll> pll;

pll solve_relaxed(vector<ll>& val, ll cost) {
 pll inc{val[0] - cost, 1}, exc{};
 for (int i = 1; i < val.size(); ++i) {
 pll ninc = max(
 pll{exc.first + val[i] - cost, exc.second + 1},
 pll{inc.first + val[i], inc.second}
);
 exc = max(exc, inc);
 inc = ninc;
 }
 return max(inc, exc);
}

int main() {
 cin.tie(0);
 ios_base::sync_with_stdio(false);

 int N, M, K;
 cin >> N >> M >> K;

 vector<ll> val;
 ll last_pos = 0;
 ll total_heights = 0;
 for (int i = 0; i < M; ++i) {
 ll a, b;
 cin >> a >> b;

18

 total_heights += b;
 val.push_back(a - last_pos - 1);
 val.push_back(1 - b);
 last_pos = a;
 }
 if (last_pos < N) val.push_back(N - last_pos);

 ll low = 0;
 ll upp = 1e15;
 while (low < upp) {
 ll mid = (low + upp + 1) / 2;
 auto res = solve_relaxed(val, mid);
 if (res.second >= K) low = mid;
 else upp = mid - 1;
 }

 auto ans = solve_relaxed(val, low);
 cout << ans.first + K * low + total_heights << endl;

 return 0;
}

19

	Introduction
	Resources
	Trek 2
	Subtask 1
	Python Solution
	Ruby Solution

	Subtask 2
	Python Solution

	Subtask 3
	Python Solution

	Full Solution
	Python Solution
	C++ Solution

	Mural
	Subtask 1
	Python Solution

	Subtask 2
	Python Solution

	Full Solution
	Python Solution

	Duck Tape
	Subtask 1
	Python Solution

	Subtask 2
	Python Solution

	Subtask 3
	Python Solution

	Full Solution
	Python Solution
	C++ Solution

	Mischievous Gnomes
	Subtask 1
	Python Solution

	Subtask 2
	Python Solution

	Subtask 3
	Python Solution

	Full Solution
	C++ Solution

	Sleep Gardening
	Subtask 1
	Python Solution

	Subtask 2
	Python Solution

	Subtask 3
	Python Solution

	Subtask 4
	Python Solution

	Full Solution
	Approach 1 (Greedy)
	C++ Solution

	Approach 2 (Dynamic Programming)
	Python Solution
	C++ Solution

	Big O Complexity
	Time Complexity

	Additional Example Solutions
	Trek 2 Full Solution (C++)
	Mural Subtask 2 Solution (Python)
	Duck Tape Full Solution (C++)
	Mischievous Gnomes Subtask 1 Solution (Python)
	Mischievous Gnomes Subtask 2 Solution (Python)
	Mischievous Gnomes Subtask 3 Solution (Python)
	Mischievous Gnomes Full Solution (C++)
	Sleep Gardening Subtask 3 Solution (Python)
	Sleep Gardening Subtask 4 Solution (C++)
	Sleep Gardening Full Solution 1 (C++)
	Sleep Gardening Full Solution 2 (C++)

