
May 15, 2025

New Zealand Informatics Competition 2025
Round One

Editorial by Anatol C, Zalan V

1

Contents
Introduction . 2
Resources . 2
Midnight Snack . 3
Carpentry . 4
Repeat Repeat . 5
Safe Crossings . 7
Trout II . 9
Big O Complexity . 12
Additional Example Solutions . 13

Introduction
The solutions to this round of NZIC problems are discussed in detail below. In a few questions we
may refer to the Big O complexity of a solution, e.g. 𝑂(𝑁). There is an explanation of Big O
complexity at the end of this document.

Resources
Ever wondered what the error messages mean?

https://www.nzoi.org.nz/nzic/resources/understanding-judge-feedback.pdf

Read about how the server marking works:

https://www.nzoi.org.nz/nzic/resources/how-judging-works-python3.pdf

Ever wondered why your submission scored zero?

https://www.nzoi.org.nz/nzic/resources/why-did-i-score-zero.pdf

See our list of other useful resources here:

https://www.nzoi.org.nz/nzic/resources

2

https://www.nzoi.org.nz/nzic/resources/understanding-judge-feedback.pdf
https://www.nzoi.org.nz/nzic/resources/how-judging-works-python3.pdf
https://www.nzoi.org.nz/nzic/resources/why-did-i-score-zero.pdf
https://www.nzoi.org.nz/nzic/resources

Midnight Snack
Problem authored by Zalan V & Anatol C
https://train.nzoi.org.nz/problems/1531

Subtask 1
In this subtask, Andrew can eat all cookies with tastiness of at least 1. Since all cookies have tastiness
of at least 1, he simply eats all cookies. Therefore, the total tastiness of the cookies he eats is the sum
of the tastiness of all cookies.

Python Solution
N = int(input())
K = int(input())

total_tastiness = 0
for i in range(N):
 tastiness = int(input())
 total_tastiness += tastiness

print(total_tastiness)

Full Solution
In this case, we need to only count cookies with tastiness of at least 𝐾 . We can achieve this with almost
the same code as before. The only difference is that before adding a cookie’s tastiness to the total, we
check that its tastiness is at least 𝐾 .

Python Solution
N = int(input())
K = int(input())

total_tastiness = 0
for i in range(N):
 tastiness = int(input())
 if tastiness >= K:
 total_tastiness += tastiness

print(total_tastiness)

C++ Solution
#include <iostream>
using namespace std;
int main() {
 int n, k;
 cin >> n >> k;
 int total = 0;
 for (int i = 0; i < n; i++) {
 int t;
 cin >> t;
 if (t >= k) total += t;
 }
 cout << total << "\n";
}

3

https://train.nzoi.org.nz/problems/1531

Carpentry
Problem authored by Iván G
https://train.nzoi.org.nz/problems/1449

Subtask 1
In this subtask there are always exactly 3 logs. This means that the staircase can have size at most 3.
Note that we can always make a staircase of size 1. So, we only need to check if we can make a staircase
of size 2 or 3. So, we can use the following method to find the answer:
• You can make a staircase of size 3 if there is one log of size at least 3, and another log of size at

least 2).
• Otherwise, you can make a staircase of size 2 if there is one log of size at least 2.
• Otherwise, you can make a staircase of size 1.

Python Solution
The code for this solution can be found at the end of this document .

Subtask 2
There is no specific intended solution to this subtask, but extending a solution to Subtask 1 can solve
this subtask.

Subtask 3
In this subtask 𝑁 ≤ 1, 000. To solve this subtask, we can repeatedly take the smallest log and try to
make our staircase taller if we can. We can simply find and remove the smallest log in 𝑂(𝑁). The
overall time complexity of this solution is 𝑂(𝑁2)

Python Solution
N = int(input())
logs = list(map(int, input().split()))
height = 0
for i in range(N):
 smallest = min(logs)
 logs.pop(logs.index(smallest))
 # We can only use this log if it is taller than the current height
 if height < smallest: height += 1
print(height)

Full Solution
For the full solution we can improve the time complexity of the Subtask 3 solution by sorting the logs
before we process them. The time complexity of this solution is 𝑂(𝑁).

Python Solution
N = int(input())
logs = sorted(map(int, input().split()))
height = 0
for log in logs:
 if log <= height: continue
 height += 1
print(height)

4

https://train.nzoi.org.nz/problems/1449

Repeat Repeat
Problem authored by Anatol C
https://train.nzoi.org.nz/problems/1510

Subtask 1
In this subtask 𝑁 × 𝑀 ≤ 100. There is no specific intended solution for this subtask, but a number of
approaches with a time complexity of 𝑂(𝑁2) or 𝑂(𝑁3) will pass this subtask.

Subtask 2
In this subtask we are given that 𝑀 = 2. Thus, a plausible guess can be formed by repeating the first
half of 𝑇 . Then, the value of 𝑋 will be the number of 𝑖 such that the 𝑖-th and (𝑖 + 𝑁)-th characters
differ.

Python Solution
N, M = map(int, input().split())
T = input()

X = 0
for i in range(N):
 if T[i] != T[i + N]: X += 1
print(X)
print(T[:N] * 2)

Subtask 3
In this subtask 𝑁 = 1. Thus, we can form a plausible guess by finding the most common character in
𝑇 and repeating it 𝑀 times. We can count the number of occurrences of each letter A through Z and
find the most common one in 𝑂(𝑁). The overall time complexity of this solution is 𝑂(𝑁).

Python Solution
N, M = map(int, input().split())
T = input()

LETTERS = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

counts = [T.count(letter) for letter in LETTERS]
most_frequent = 0
for i in range(26):
 if counts[i] > counts[most_frequent]: most_frequent = i
print(M - counts[most_frequent])
print(M * LETTERS[most_frequent])

Subtask 4
In this subtask 𝑇 consists of only A or B characters. Thus, for each 0 ≤ 𝑖 < 𝑁 we can find whether A or
B is the most common character in the substring 𝑇 [𝑖], 𝑇 [𝑖 + 𝑁], 𝑇 [𝑖 + 2𝑁], … and a plausible guess
can be formed by repeating the most common character in each position.

Python Solution
N, M = map(int, input().split())
T = input()

X = 0
S = ""

5

https://train.nzoi.org.nz/problems/1510

for i in range(N):
 a_count = T[i::N].count('A')
 if a_count >= M / 2:
 S += 'A'
 X += M - a_count
 else:
 S += 'B'
 X += a_count
print(X)
print(S * M)

Full Solution
Similarly to Subtask 4, for the full solution we need to find the most common character in each of
the substrings 𝑇 [𝑖], 𝑇 [𝑖 + 𝑁], 𝑇 [𝑖 + 2𝑁], … then we can form a plausible guess by repeating the most
common character in each position 𝑀 times. The overall time complexity of this solution is 𝑂(𝑁).

Note: Appending to the end of a string in Python is 𝑂(1) when submitting with CPython and 𝑂(𝑁)
when submitting with PyPy. Thus, this solution when submitted using PyPy will run in 𝑂(𝑁2), but
should still be fast enough to pass.

Python Solution
from collections import Counter

N, M = map(int, input().split())
T = input()

S = ""
X = 0
for i in range(N):
 letter, count = Counter(T[i::N]).most_common(1)[0]
 S += letter
 X += M - count
print(X)
print(S * M)

6

Safe Crossings
Problem authored by Joseph G
https://train.nzoi.org.nz/problems/1513

Subtask 1
In this subtask 𝑀 = 1 so there is only one lane. Thus, we can simply find the maximum safety score
of all gaps. One edge case that we need to be wary of is that because we do not start in lane 1 but in
front of it, and crossing into a lane takes one second, the earliest that we can arrive into the first lane
is at time 1. The time complexity of this solution is 𝑂(𝑁).

Python Solution
N, M = map(int, input().split())
gaps = [tuple(map(int, input().split())) for _ in range(N)]
max_safety = 0
for l, s, e in gaps:
 max_safety = max(max_safety, e - max(s, 1))
print(max_safety)

Subtask 2
In this subtask there is exactly one gap per lane. Thus, the optimal solution will be to always cross into
the next lane as early as possible. Whenever we cross into the next lane, we can calculate the safety
score achieved based on when we cross into the next lane. Our answer will then be the minimum of
the safety scores in each lane. The time complexity of this solution is 𝑂(𝑁).

Python Solution
N, M = map(int, input().split())
gaps = sorted(tuple(map(int, input().split())) for _ in range(N))
curr_gap_start = 0
curr_gap_end = 10**9
min_safety = 10**9
for l, s, e in gaps:
 curr_gap_start = max(curr_gap_start + 1, s)
 safety = curr_gap_end - curr_gap_start + 1
 if safety <= 0:
 print(0)
 break
 min_safety = min(min_safety, safety)
 curr_gap_end = e
else:
 min_safety = min(min_safety, curr_gap_end - curr_gap_start)
 print(min_safety)

Subtask 3
In this subtask the maximum size of any gap is 100. This means that the maximum possible safety score
that can be achieved is 100.

For a given safety score 𝑛 we can consider adjusting all gaps to be of the form (𝑠, 𝑒 − 𝑛) and ignore
gaps where the end is before the start. Then, we can cross with this safety score only if it is possible
to cross using the safety adjusted gaps.

An idea that can help simplify the implementation of this solution is to shift the gaps in lane 𝑙 to be
(𝑠 − 𝑙, 𝑒 − 𝑙), then we only need to look for strictly intersecting gaps between lanes.

7

https://train.nzoi.org.nz/problems/1513

We can go through the possible safety scores in increasing order, and check that we can still cross, and
stop when it is no longer possible to cross. The time complexity of this solution is 𝑂(𝑁2 × 𝑆) where
𝑆 is the maximum possible safety score.

Python Solution
The code for this solution can be found at the end of this document .

Subtask 4
We can make a simple improvement to the previous subtask by using binary search to find the
maximum possible safety score. This reduces the time complexity to 𝑂(𝑁2 log(𝑆)) and will score
70 points.

Python Solution
The code for this solution can be found at the end of this document .

Full Solution
We can further optimise the solution to Subtask 4 by using a two pointers approach to determine the
reachable adjusted gaps in each lane. To do this we need to sort the gaps in each lane, and keep a
pointer to the gaps in the current lane which we increase when it no longer intersects with the gap
we are considering in the next lane.

The overall time complexity of this solution is then 𝑂(𝑁 log(𝑆)).

Python Solution
The code for this solution can be found at the end of this document .

8

Trout II
Problem authored by Zalan V
https://train.nzoi.org.nz/problems/1443

Subtask 1
In this subtask the lakes are arranged in a line and 𝑁 ≤ 100. We can observe that the number of
shipment routes disrupted by sabotaging any given channel will be the number of pairs of lakes with
the same type of lure where one lake is to the left of the channel and the other is to the right. In this
subtask we can try every possible channel to sabotage, and count the number of pairs in 𝑂(𝑁2). Since
there are 𝑂(𝑁) channels, the overall complexity of this solution is 𝑂(𝑁3) and it will score 20 points.

Python Solution
N, M = map(int, input().split())
lure_types = list(map(int, input().split()))
max_disrupted = 0
for i in range(1, N):
 disrupted = 0
 for j in range(i):
 for k in range(i, N):
 if lure_types[j] == lure_types[k]:
 disrupted += 1
 max_disrupted = max(max_disrupted, disrupted)
print(max_disrupted)

Subtask 2
We can improve the time complexity of the previous solution by keeping track of the number of lakes
with each lure type to the left. This allows us to calculate the number of disrupted shipping routes in
𝑂(𝑁). The overall complexity of this solution is 𝑂(𝑁2) and it scores 30 points.

Python Solution
The code for this solution can be found at the end of this document .

Subtask 3
Let 𝐿𝑖 and 𝑅𝑖 denote the number of lakes with lures of type 𝑖 to the left and right of the current channel
respectively. Then, the total disruption is the sum of 𝐿𝑖 × 𝑅𝑖 for all 𝑖. We observe that when moving to
consider the next channel, only the number of pairs of the current lure type can change. Thus, we can
keep track of the number of disrupted routes and update this number as we iterate over the possible
channels to remove. The complexity of this solution is 𝑂(𝑁) and it scores 40 points.

Python Solution
The code for this solution can be found at the end of this document .

Subtask 4
In this subtask the lakes are arranged in a tree. Thus, removing any channel will cause some routes to
be disrupted. Let us root the tree at lake 0.

Let 𝑇𝑖 denote the total number of lures of type 𝑖. Let 𝑆𝑗(𝑖) denote the number of lures of type 𝑖 in the
subtree of lake 𝑗. Similarly to the previous subtasks, the disruption for a channel between a lake 𝑗 and
its parent is given by the sum of (𝑇𝑖 − 𝑆𝑗(𝑖)) × 𝑆𝑗(𝑖) over all lures types.

9

https://train.nzoi.org.nz/problems/1443

We can perform a depth-first search where from each lake we return the disruption caused by removing
the (parent -> lake) channel, and a hash map (dictionary in Python) of (lure_type, count). For each lake
we can merge together the map of lure counts from each child and update the disruption using some
math similarly to Subtask 3.

The issue with this approach is that merging the sets is 𝑂(𝑁), which makes the overall complexity of
the solution 𝑂(𝑁2), which is too slow to solve this subtask. However, when merging two sets, if we
take care to always move the elements of the smaller set into the larger set, then we can prove that
any given element will only be moved between sets 𝑂(log(𝑁)) times. Since moving each element is
𝑂(1) the overall complexity of merging all the sets is 𝑂(𝑁 log(𝑁)). Implementing this optimisation
makes this approach fast enough to solve this subtask.

The overall complexity of this solution is 𝑂(𝑁 log(𝑁)) and it scores 60 points.

Python Solution
The code for this solution can be found at the end of this document .

Subtask 5
An edge is referred to as a bridge if removing it will divide the graph into two pieces, between which
there is no longer any path. We observe that any edge that is not a bridge will not cause any disruption
(as by definition there will be some other path between any two nodes). The following Python code
demonstrates how to detect bridges in a graph (you can read more about finding bridges here):

low = [None] * N
def dfs(node, parent, depth):
 low[node] = depth
 for child in adjacent[n]:
 # Ignore the parent
 if child == parent: continue
 if low[child] is None:
 dfs(child, node, depth + 1)
 low[node] = min(low[node], low[child])
 # This is an ancestor of the current node
 else: low[node] = min(low[node], low[child])
 if low[node] == depth and parent is not None:
 # This indicates that the (parent, node) edge is a bridge

dfs(0, None, 1)

Let 𝑆𝑗 denote the number of lakes in the subtree of lake 𝑗. Then, since every lake has the same type
of lure in this subtask, we can easily calculate the disruption of removing a given bridge as (𝑁 −
𝑆𝑗) × 𝑆𝑗.

This complexity of this solution is 𝑂(𝑁) and it scores 25 points. This solution can easily be combined
with the solution to Subtask 4 by checking if 𝑀 = 𝑁 − 1 to score 85 points.

Python Solution
The code for this solution can be found at the end of this document .

Full Solution
We will extend the Subtask 4 solution to solve the full problem. We consider that in our depth first
search, if the edge from the parent to the current node is a bridge, then the Subtask 4 solution will give
the correct number of disrupted routes. Thus, we can combine the Subtask 4 and Subtask 5 solutions so

10

https://cp-algorithms.com/graph/bridge-searching.html

that we only consider the current (parent → node) channel if it is a bridge. The overall time complexity
of this solution is 𝑂(𝑁 log(𝑁)).

Note: A recursive solution using Python will likely be too slow even submitting with PyPy, so to fully
solve this problem in Python we need to perform the DFS iteratively rather than recursively.

C++ Solution
The code for this solution can be found at the end of this document .

11

Big O Complexity
Computer scientists like to compare programs using something called Big O notation. This works by
choosing a parameter, usually one of the inputs, and seeing what happens as this parameter increases
in value. For example, let’s say we have a list 𝑁 items long. We often call the measured parameter 𝑁 .
For example, a list of length 𝑁 .

In contests, problems are often designed with time or memory constraints to make you think of a more
efficient algorithm. You can estimate this based on the problem’s constraints. It’s often reasonable to
assume a computer can perform around 100 million (100,000,000) operations per second. For example,
if the problem specifies a time limit of 1 second and an input of 𝑁 as large as 100,000, then you know
that an 𝑂(𝑁2) algorithm might be too slow for large 𝑁 since 100,0002 = 10,000,000,000, or 10 billion
operations.

Time Complexity
The time taken by a program can be estimated by the number of processor operations. For example,
an addition 𝑎 + 𝑏 or a comparison 𝑎 < 𝑏 is one operation.

𝑂(1) time means that the number of operations a computer performs does not increase as 𝑁 increases
(i.e. does not depend on 𝑁). For example, say you have a program containing a list of 𝑁 items and
want to access the item at the 𝑖-th index. Usually, the computer will simply access the corresponding
location in memory. There might be a few calculations to work out which location in memory the
entry 𝑖 corresponds to, but these will take the same amount of computation regardless of 𝑁 . Note
that time complexity does not account for constant factors. For example, if we doubled the number of
calculations used to get each item in the list, the time complexity is still 𝑂(1) because it is the same
for all list lengths. You can’t get a better algorithmic complexity than constant time.

𝑂(log 𝑁) time suggests the program takes a constant number of extra operations every time 𝑁 doubles
in size. For example, finding a number in a sorted list using binary search might take 3 operations
when 𝑁 = 8, but it will only take one extra operation if we double 𝑁 to 16. As far as efficiency goes,
this is pretty good, since 𝑁 generally has to get very, very large before a computer starts to struggle.

𝑂(𝑁) time means you have an algorithm where the number of operations is directly proportional to
𝑁 . For example, a maximum finding algorithm max() will need to compare against every item in a
list of length 𝑁 to confirm you have indeed found the maximum. Usually, if you have one loop that
iterates 𝑁 times your algorithm is 𝑂(𝑁).

𝑂(𝑁2) time means the number of operations is proportional to 𝑁2 . For example, suppose you had an
algorithm which compared every item in a list against every other item to find similar items. For a list
of 𝑁 items, each item has to check against the remaining 𝑁 − 1 items. In total, 𝑁(𝑁 − 1) checks are
done. This expands to 𝑁2 − 𝑁 . For Big O, we always take the most significant term as the dominating
factor, which gives 𝑂(𝑁2). This is generally not great for large values of 𝑁 , which can take a very
long time to compute. As a general rule of thumb in contests, 𝑂(𝑁2) algorithms are only useful for
input sizes of 𝑁 ≲ 10,000. Usually, if you have a nested loop in your program (loop inside a loop) then
your solution is 𝑂(𝑁2) if both these loops run about 𝑁 times.

12

Additional Example Solutions
Carpenty Subtask 1 Python Solution
N = int(input())
h = list(map(int, input().split()))

for i in range(3):
 if h[i] >= 3:
 # Check if there is another log of size at least 2
 for j in range(3):
 if h[j] >= 2 and i != j:
 print(3)
 break
else:
 if max(h) >= 2:
 print(2)
 else:
 print(1)

Safe Crossings Subtask 3 Python Solution
N, M = map(int, input().split())
lanes = [[] for _ in range(M)]
for _ in range(N):
 l, s, e = map(int, input().split())
 s = max(s - l + 1, 1)
 e = e - l + 1
 if s < e: lanes[l - 1].append((s, e))

def can_cross(safety):
 adjusted_lanes = [[(s, e - safety) for s, e in lane if s <= e - safety] for lane
in lanes]
 # We can arrive as early as possible to every gap in the first lane
 arrival_times = [gap[0] for gap in adjusted_lanes[0]]
 for lane in range(M - 1):
 next_arrival_times = [10**9] * len(adjusted_lanes[lane + 1])
 for j in range(len(adjusted_lanes[lane])):
 start = arrival_times[j]
 end = adjusted_lanes[lane][j][1]
 # Ignore invalid gaps
 if end < start: continue
 for k in range(len(adjusted_lanes[lane + 1])):
 next_start, next_end = adjusted_lanes[lane + 1][k]
 # Check if the gaps overlap
 if start <= next_end and next_start <= end:
 next_arrival_times[k] = min(next_arrival_times[k], max(start,
next_start))
 arrival_times = next_arrival_times
 for x in arrival_times:
 if x < 10**9: return True
 return False

for i in range(1, 100_000_001):
 if not can_cross(i): break
print(i - 1)

13

Safe Crossings Subtask 4 Python Solution
N, M = map(int, input().split())
lanes = [[] for _ in range(M)]
for _ in range(N):
 l, s, e = map(int, input().split())
 s = max(s - l + 1, 1)
 e = e - l + 1
 if s < e: lanes[l - 1].append((s, e))

def can_cross(safety):
 adjusted_lanes = [[(s, e - safety) for s, e in lane if s <= e - safety] for lane
in lanes]
 # We can arrive as early as possible to every gap in the first lane
 arrival_times = [gap[0] for gap in adjusted_lanes[0]]
 for lane in range(M - 1):
 next_arrival_times = [10**9] * len(adjusted_lanes[lane + 1])
 for j in range(len(adjusted_lanes[lane])):
 start = arrival_times[j]
 end = adjusted_lanes[lane][j][1]
 # Ignore invalid gaps
 if end < start: continue
 for k in range(len(adjusted_lanes[lane + 1])):
 next_start, next_end = adjusted_lanes[lane + 1][k]
 # Check if the gaps overlap
 if start <= next_end and next_start <= end:
 next_arrival_times[k] = min(next_arrival_times[k], max(start,
next_start))
 arrival_times = next_arrival_times
 for x in arrival_times:
 if x < 10**9: return True
 return False

low = 0
upp = 100_000_000
while low < upp:
 mid = (low + upp + 1) // 2
 if can_cross(mid): low = mid
 else: upp = mid - 1
print(low)

Safe Crossings Full Python Solution
N, M = map(int, input().split())
lanes = [[] for _ in range(M)]
for _ in range(N):
 l, s, e = map(int, input().split())
 s = max(s - l + 1, 1)
 e = e - l + 1
 if s < e: lanes[l - 1].append((s, e))

for i in range(M):
 lanes[i].sort()

def can_cross(safety):
 adjusted_lanes = [[(s, e - safety) for s, e in lane if s <= e - safety] for lane
in lanes]
 possible_gaps = adjusted_lanes[0]

14

 for i in range(1, M):
 next_possible_gaps = []
 gap_idx = 0
 for start, end in adjusted_lanes[i]:
 # Skip over gaps that end before the start of the current gap
 while gap_idx < len(possible_gaps) and possible_gaps[gap_idx][1] < start:
 gap_idx += 1
 if gap_idx >= len(possible_gaps): break
 if possible_gaps[gap_idx][0] <= end and start <= possible_gaps[gap_idx]
[1]:
 next_possible_gaps.append((max(start, possible_gaps[gap_idx][0]),
end))
 possible_gaps = next_possible_gaps
 return len(possible_gaps) > 0

low = 0
upp = 100_000_000
while low < upp:
 mid = (low + upp + 1) // 2
 if can_cross(mid): low = mid
 else: upp = mid - 1
print(low)

Trout II Subtask 2 Python Solution
N, M = map(int, input().split())
lure_types = list(map(int, input().split()))
left_counts = [0] * 100_000
max_disrupted = 0
for i in range(N - 1):
 left_counts[lure_types[i]] += 1
 disrupted = 0
 for j in range(i + 1, N):
 disrupted += left_counts[lure_types[j]]
 max_disrupted = max(max_disrupted, disrupted)
print(max_disrupted)

Trout II Subtask 3 Python Solution
N, M = map(int, input().split())
lure_types = list(map(int, input().split()))

left_counts = [0] * 100_000
right_counts = [0] * 100_000
for lure in lure_types:
 right_counts[lure] += 1

max_disrupted = 0
disrupted = 0
for lure in lure_types:
 disrupted -= left_counts[lure] * right_counts[lure]
 left_counts[lure] += 1
 right_counts[lure] -= 1
 disrupted += left_counts[lure] * right_counts[lure]
 max_disrupted = max(max_disrupted, disrupted)
print(max_disrupted)

15

Trout II Subtask 4 Python Solution
from collections import defaultdict
import sys
sys.setrecursionlimit(200000)

N, M = map(int, input().split())
lure_types = list(map(int, input().split()))

total_lure_counts = [0] * 100_000
for lure in lure_types:
 total_lure_counts[lure] += 1

adj = [[] for _ in range(N)]
for _ in range(M):
 a, b = map(int, input().split())
 adj[a].append(b)
 adj[b].append(a)

def solve(node, parent, depth):
 lowest_reachable[node] = depth
 disrupted = 0
 lure_counts = defaultdict(int)

 for child in adj[node]:
 # Ignore this edge if it leads back to the parent
 if child == parent: continue
 # Only traverse into the child node if we have not yet visited it
 if lowest_reachable[child] == 0:
 child_disrupted, child_lure_counts = solve(child, node, depth + 1)
 disrupted += child_disrupted

 # Swap the two dictionaries so that we merge the smaller one into the
larger one
 if (len(child_lure_counts) > len(lure_counts)):
 child_lure_counts, lure_counts = lure_counts, child_lure_counts

 for a, b in child_lure_counts.items():
 disrupted -= 2 * lure_counts[a] * b
 lure_counts[a] += b
 lowest_reachable[node] = min(lowest_reachable[node], lowest_reachable[child])

 disrupted += total_lure_counts[lure_types[node]] - 2 *
lure_counts[lure_types[node]] - 1
 lure_counts[lure_types[node]] += 1

 # We only consider the disruption if there is no other edge that leads into this
subtree than (parent <-> node)
 if (lowest_reachable[node] == depth):
 global max_disrupted
 max_disrupted = max(max_disrupted, disrupted)

 return (disrupted, lure_counts)

lowest_reachable = [0] * N
max_disrupted = 0

16

solve(0, -1, 1)
print(max_disrupted)

Trout II Subtask 5 Python Solution
import sys
sys.setrecursionlimit(200000)

N, M = map(int, input().split())
input()
adj = [[] for _ in range(N)]
for _ in range(M):
 a, b = map(int, input().split())
 adj[a].append(b)
 adj[b].append(a)

def dfs(node, parent, depth):
 lowest_reachable[node] = depth
 low = depth
 subgraph_size = 1

 for child in adj[node]:
 if child == parent: continue
 if not lowest_reachable[child]: subgraph_size += dfs(child, node, depth + 1)
 low = min(low, lowest_reachable[child])

 if low == depth:
 global ans
 ans = max(ans, (N - subgraph_size) * subgraph_size)

 lowest_reachable[node] = low
 return subgraph_size

ans = 0
lowest_reachable = [0] * N
dfs(0, -1, 1)
print(ans)

Trout II Full C++ Solution
#include <bits/stdc++.h>
#define R(a) for (int i = 0; i < a; ++i)
using namespace std;
typedef long long ll;
typedef vector<int> vi;

ll max_disruption;
vi adj[100'000];
int total_lure_counts[100'000];
int lure_types[100'000];
int lowest_reachable[100'000];

pair<ll, unordered_map<int, int>> solve(int node, int parent, int depth) {
 lowest_reachable[node] = depth;
 pair<ll, unordered_map<int, int>> res;
 for (int child : adj[node]) {

17

 if (child == parent) continue;
 if (!lowest_reachable[child]) {
 auto child_res = solve(child, node, depth + 1);
 res.first += child_res.first;
 if (child_res.second.size() > res.second.size()) swap(res.second,
child_res.second);
 for (auto [type, count] : child_res.second) {
 res.first -= 2ll * res.second[type] * count;
 res.second[type] += count;
 }
 }
 lowest_reachable[node] = min(lowest_reachable[node],
lowest_reachable[child]);
 }

 res.first += total_lure_counts[lure_types[node]] - 2 *
res.second[lure_types[node]] - 1;
 res.second[lure_types[node]]++;

 if (lowest_reachable[node] == depth) max_disruption = max(max_disruption,
res.first);

 return res;
}

int main() {
 int N, M;
 cin >> N >> M;

 R(N) cin >> lure_types[i];
 R(N) total_lure_counts[lure_types[i]]++;

 R(M) {
 int a, b;
 cin >> a >> b;
 adj[a].push_back(b);
 adj[b].push_back(a);
 }

 solve(0, -1, 1);
 cout << max_disruption << '\n';

 return 0;
}

18

	Introduction
	Resources
	Midnight Snack
	Subtask 1
	Python Solution

	Full Solution
	Python Solution
	C++ Solution

	Carpentry
	Subtask 1
	Python Solution

	Subtask 2
	Subtask 3
	Python Solution

	Full Solution
	Python Solution

	Repeat Repeat
	Subtask 1
	Subtask 2
	Python Solution

	Subtask 3
	Python Solution

	Subtask 4
	Python Solution

	Full Solution
	Python Solution

	Safe Crossings
	Subtask 1
	Python Solution

	Subtask 2
	Python Solution

	Subtask 3
	Python Solution

	Subtask 4
	Python Solution

	Full Solution
	Python Solution

	Trout II
	Subtask 1
	Python Solution

	Subtask 2
	Python Solution

	Subtask 3
	Python Solution

	Subtask 4
	Python Solution

	Subtask 5
	Python Solution

	Full Solution
	C++ Solution

	Big O Complexity
	Time Complexity

	Additional Example Solutions
	Carpenty Subtask 1 Python Solution
	Safe Crossings Subtask 3 Python Solution
	Safe Crossings Subtask 4 Python Solution
	Safe Crossings Full Python Solution
	Trout II Subtask 2 Python Solution
	Trout II Subtask 3 Python Solution
	Trout II Subtask 4 Python Solution
	Trout II Subtask 5 Python Solution
	Trout II Full C++ Solution

