
May 01, 2024

New Zealand Informatics Competition 2024
Round One

Editorial by Zalan V, Anatol C, Phoebe Z, Jonathon S

1

Contents
Introduction ... 2
Resources .. 2
Cardboard Boxes ... 3
Betty The Cat 2 .. 4
Supply Scheduling .. 6
Pinecones .. 9
The Grand Tree .. 12
Additional Example Solutions ... 16
Big O Complexity ... 23

Introduction
The solutions to this round of NZIC problems are discussed in detail below. In a few questions we
may refer to the Big O complexity of a solution, e.g. 𝑂(𝑁). There is an explanation of Big O
complexity at the end of this document.

Resources
Ever wondered what the error messages mean?

https://www.nzoi.org.nz/nzic/resources/understanding-judge-feedback.pdf

Read about how the server marking works:

https://www.nzoi.org.nz/nzic/resources/how-judging-works-python3.pdf

Ever wondered why your submission scored zero?

https://www.nzoi.org.nz/nzic/resources/why-did-i-score-zero.pdf

See our list of other useful resources here:

https://www.nzoi.org.nz/nzic/resources

2

https://www.nzoi.org.nz/nzic/resources/understanding-judge-feedback.pdf
https://www.nzoi.org.nz/nzic/resources/how-judging-works-python3.pdf
https://www.nzoi.org.nz/nzic/resources/why-did-i-score-zero.pdf
https://www.nzoi.org.nz/nzic/resources

Cardboard Boxes
Problem authored by Iván G
https://train.nzoi.org.nz/problems/1371

Full Solution
The observation required to solve this problem is that we can stack as many unique boxes on top of
each other as we want, we would just need to sort them. Thus, to solve this problem we need to find
the number of unique boxes. Since each box has a width of at most 10, 000 we can use an array, or
alternatively a hash table (known as a set in python) to find the number of unique box widths.

Python Solution
N = int(input())
boxes = []
for i in range(N):
 boxes.append(input())
unique_boxes = set(boxes)
print(len(unique_boxes))

3

https://train.nzoi.org.nz/problems/1371

Betty The Cat 2
Problem authored by Phoebe Z
https://train.nzoi.org.nz/problems/1391

This solution makes heavy use of the floor and ceiling operators. ⌊𝑥⌋ represents 𝑥 rounded down to
the nearest integer. ⌈𝑥⌉ represents 𝑥 rounded up to the nearest integer.

Subtask 1
In this subtask, we can always meet the quota exactly. The naive way of doing so is to just get 𝐾 boxes,
each containing one cookie. However, we can use less boxes by taking as many boxes of 𝐵 cookies as
possible.

Specifically, the optimal solution is to get ⌊𝐾
𝐵 ⌋ boxes of 𝐵 cookies and then add as many boxes of 1

cookie as needed.

Python Solution
A, B, K = map(int, input().split())
b_boxes = K // B
a_boxes = K - B * b_boxes
print(0, a_boxes + b_boxes)

Subtask 2
In this subtask, since there is really only one kind of cookie box we can get, we don’t have that many
options for how many boxes to buy. The optimal solution is to buy either ⌊𝐾

𝐵 ⌋ or ⌈𝐾
𝐵 ⌉, boxes. as

anything higher/lower we can simply remove/add a cookie box to achieve a strictly better solution.
Therefore we can check both ⌊𝐾

𝐵 ⌋ and ⌈𝐾
𝐵 ⌉ and take the solution with a smaller difference to the target

𝐾 – if they have the same difference, we take ⌊𝐾
𝐵 ⌋ as it requires a smaller number of cookie boxes.

Python Solution
A, B, K = map(int, input().split())
take_floor = (K % B, K // B)
take_ceil = (B - (K % B), K // B + 1)
if take_floor[0] <= take_ceil[0]:
 print(take_floor[0], take_floor[1])
else:
 print(take_ceil[0], take_ceil[1])

Subtask 3
Note that in an optimal solution, we will never need more than 𝐾 boxes of 𝐴 cookies. Buying 𝐾 boxes
will put us exactly at or above the quota so buying more than 𝐾 boxes will always place us further
from the quota than buying exactly 𝐾 .

Since 𝐾 is small in this subtask, we can iterate some variable (call it 𝑖) from 0 to 𝐾 and find the best
solution possible when buying 𝑖 boxes of 𝐴 cookies, and then keep track of the best overall solution.

If we are buying 𝑖 boxes of 𝐴 cookies then there are two distinct scenarios. Either 𝐴 ⋅ 𝑖 ≥ 𝐾 and we
are already above the quote. In this case buying any amount of boxes of 𝐵 cookies would make the
solution strictly worse, so we should get none. In the other case, we can use the same trick as in the
last subtask to find the best amount of boxes of 𝐵 cookies to buy. The optimal solution is to buy either
⌊𝐾−𝐴⋅𝐼

𝐵 ⌋ or ⌈𝐾−𝐴⋅𝐼
𝐵 ⌉ boxes of 𝐵 cookies, whichever gives the better result.

4

https://train.nzoi.org.nz/problems/1391

Python Solution
The code for this solution can be found at the end of this document .

Full Solution
Without loss of generality, assume that 𝐴 ≤ 𝐵. (If that is not the case, simply swap 𝐴 and 𝐵). Note
that if we have a solution with 𝐵 boxes of 𝐴 cookies, then we can replace that with 𝐴 boxes of 𝐵
cookies. Note that in this new solution Betty still eats the same amount of cookies (because 𝐵 ⋅ 𝐴 =
𝐴 ⋅ 𝐵). Additionaly, if 𝐴 ≠ 𝐵, this decreases the total number of boxes (otherwise the number of boxes
stays the same). So, this new solution is as good or better than the old solution. All of this means that
an optimal solution where we buy less than 𝐵 boxes of 𝐴 cookies.

Now, we can use nearly the exact same solution as the previous subtask except that we must swap 𝐴
and 𝐵 if 𝐴 > 𝐵 and we only need to iterate the value of 𝑖 up to 𝐵.

Python Solution
The code for this solution can be found at the end of this document .

C++ Solution
The code for this solution can be found at the end of this document .

Extra fun
Try the leveled up version https://train.nzoi.org.nz/problems/1414 (does not require linear diophantine
equation) (requires more than one line)

5

https://train.nzoi.org.nz/problems/1414

Supply Scheduling
Problem authored by Iván G
https://train.nzoi.org.nz/problems/1377

Subtask 1
In this subtask there are only two possible answers. The first scenario is when 𝐴[1] − 𝐴[0] = 𝐵[1] −
𝐵[0] in which case if the two zoos receive their first delivery on the same day, the second deliveries
will also arrive on the same day and so the answer is 2. Otherwise, we can still arrange for the first
deliveries to arrive on the same day, but then the next deliveries will be on separate days and so food
must be delivered on 3 distinct days.

Python Solution
N = int(input())
a_days = list(map(int, input().split()))
b_days = list(map(int, input().split()))

if a_days[1] - a_days[0] == b_days[1] - b_days[0]:
 print(2)
else:
 print(3)

Subtask 2
In this subtask, note that opening the Basilisk Biosphere more than 2000 days after the Aardvark Asy-
lum will always result in no delivery days lining up. Similarly, opening the Biosphere more than 2000
days before the Asylum will have the same result. This means the number of days that we must offset
the opening of the Biosphere (relative) to the ayslum is between −2000 and 2000, giving us only 4001
possible values. We note that a negative offset is possible because we can delay the opening days of
both zoos by as much as needed so the first delivery occurs after the opening day.

We can simply iterate over each of these offsets, and for each of them, count the number of days that
line up. Since both arrays are sorted, we can iterate through both arays together to find the number of
days that line up with a certain offset in 𝑂(𝑁).

If no days line up then food must be delivered on 2 ⋅ 𝑁 different days. For each pair of days that line
up, this removes one delivery day so the answer is simply 2 ⋅ 𝑁 minus the maximum number of days
we can make line up.

N = int(input())
a_days = list(map(int, input().split()))
b_days = list(map(int, input().split()))

max_matching = 0
for offset in range(-2000, 2001):
 a_index = 0
 b_index = 0
 matched = 0
 while a_index < N and b_index < N:
 if b_days[b_index] < a_days[a_index] + offset:
 b_index += 1
 elif b_days[b_index] == a_days[a_index] + offset:
 a_index += 1
 b_index += 1
 matched += 1

6

https://train.nzoi.org.nz/problems/1377

 else:
 a_index += 1

 max_matching = max(max_matching, matched)

print(2 * N - max_matching)

Subtask 3
Note that in any testcase we can always make any two delivery days line up. If the asylum opens on
some day 𝑎𝑥 and the biosphere opens on some day 𝑏𝑦 then by opening the biosphere 𝑎𝑥 − 𝑏𝑦 days
after the asylum, those two deliveries will be on the same day.

Importantly, this means the only offsets that are worth trying are those of the form 𝑎𝑥 − 𝑏𝑦 since any
other offsets would result in zero days lining up.

Remember from subtask two that we can check each offset in 𝑂(𝑁). Here, the number of offsets to
check is just 𝑂(𝑁2) (since it is every pair-wise difference between the two arrays and the number of
pairs is 𝑁2). This means that we can now find the maximum number of lined up days in 𝑂(𝑁3) giving
us an 𝑂(𝑁3) solution which passes this subtask since 𝑁 ≤ 100.

N = int(input())
a_days = list(map(int, input().split()))
b_days = list(map(int, input().split()))

differences = []
for a_day in a_days:
 for b_day in b_days:
 differences.append(b_day - a_day)

max_matching = 0
for offset in differences:
 a_index = 0
 b_index = 0
 matched = 0
 while a_index < N and b_index < N:
 if b_days[b_index] < a_days[a_index] + offset:
 b_index += 1
 elif b_days[b_index] == a_days[a_index] + offset:
 a_index += 1
 b_index += 1
 matched += 1
 else:
 a_index += 1

 max_matching = max(max_matching, matched)

print(2 * N - max_matching)

Full
We can reinforce the argument from the previous subtask to discover a better solution. Two opening
days 𝑎𝑥 and 𝑏𝑦 will line up if and only if the biosphere opens 𝑎𝑥 − 𝑏𝑦 days after the asylum. This means
that for some offset 𝑛 the number of delivery days that line up is the number of pairs where 𝑎𝑥 −
𝑏𝑦 = 𝑛.

Since 𝑁 ≤ 1000 we can calculate every possible value of 𝑎𝑥 − 𝑏𝑦 and count up how much each value
occurs. Whichever value occurs the most will be the optimal offset and furthermore, the number of

7

times it occurs is the number of days that will line up if we use this offset, which gives us our final
answer.

The difference of all these pairs can be calculated and counted up in 𝑂(𝑁2) using a dictionary in
python (or an unordered map or hash map in other languages) giving us an 𝑂(𝑁2) solution.

Python Solution
import collections

N = int(input())
a_days = list(map(int, input().split()))
b_days = list(map(int, input().split()))
difference_counts = collections.defaultdict(int)

for day_a in a_days:
 for day_b in b_days:
 difference_counts[day_b - day_a] += 1

print(2 * N - max(difference_counts.values()))

C++ Solution
#include <bits/stdc++.h>

using namespace std;

int N, A[1000], B[1000];

int main() {
 cin >> N;
 for (int i = 0; i < N; i++) cin >> A[i];
 for (int i = 0; i < N; i++) cin >> B[i];

 unordered_map<int, int> counts;
 for (int i = 0; i < N; i++) {
 for (int j = 0; j < N; j++) {
 counts[A[i] - B[j]]++;
 }
 }

 int res = 0;
 for (auto p: counts) res = max(res, p.second);

 cout << 2 * N - res << endl;
}

8

Pinecones
Problem authored by Jonathon S
https://train.nzoi.org.nz/problems/1375

Subtask 1
The maximum possible total height of throws for a query can be found using a greedy algorithm. For
each throw, simply throw the pinecone that gives you the maximum throw height at that point. Since
the constraints are small enough, we can simulate the throws one by one and find the maximum height
for each throw by using a for loop.

Note that we don’t need modulo here, since the constraints of this subtask guarantee that the answer
is less than 1, 000, 000, 007.

Time complexity: 𝑂(𝑄 ⋅ 𝑇 ⋅ 𝑁)

Subtask 2
In this subtask, there is only one query and the pinecone throwing heights and total number of throws
is less than 105. We can sort the pinecones, and repeatedly throw the pinecones of maximum throw
height. Alternatively, we can use a priority_queue in C++ (or the heapq module in Python) to find
the maximum height efficiently without having to sort the pinecones.

Note that in this subtask we need to use modulo, as the answer can be larger than 1, 000, 000, 007.

Time complexity: 𝑂(𝑄 ⋅ 𝑇 + 𝑁 log 𝑁)

Python Solution
MOD = 1000000007

N, Q = map(int, input().split())
heights = sorted(map(int, input().split()))
T = int(input())

total = 0
index = N - 1
current_height = heights[-1]
while T > 0 and heights[0] > 0:
 if heights[index] == current_height:
 total = (total + current_height) % MOD
 heights[index] -= 1
 T -= 1
 if index > 0:
 index -= 1
 else:
 index = N - 1
 current_height = heights[-1]
 else:
 index = N - 1
 current_height = heights[-1]

print(total)

Subtask 3
We can no longer simulate each throw in this subtask. However, since max(𝐻𝑖) ≤ 105, we can create
three lists, 𝐴, 𝐵 and num, which are defined as follows for all 1 ≤ 𝑖 ≤ max(𝐻𝑖):

9

https://train.nzoi.org.nz/problems/1375

• 𝐴𝑖 = the number of throws with height ≥ 𝑖
• 𝐵𝑖 = the sum of heights of throws with height ≥ 𝑖
• num𝑖 = the number of pinecones with initial height ≥ 𝑖

We can do this in 𝑂(max(𝐻𝑖)) time by looping from max(𝐻𝑖) down to 1, and performing 𝐴𝑖 =
𝐴𝑖+1 + num𝑖 and 𝐵𝑖 = 𝐵𝑖+1 + num𝑖 ⋅ 𝑖. Note that num can be calculated easily in 𝑂(max(𝐻𝑖)) time,
and 𝐴, 𝐵 and num are also known as prefix sums.

You can think of each pinecone 𝑖 as a column of 𝐻𝑖 cells, where each cell represents a throw, and
the height of a cell represents the height of the throw. Then, sort all columns in non-increasing order
of height. Each height will have a row of cells. In fact, for all 1 ≤ ℎ ≤ max(𝐻𝑖), height ℎ will have
exactly numℎ cells. The answer for the 𝑗-th scenario is the sum of heights of the highest 𝑇𝑗 cells.

For each scenario 𝑗, we can now binary search for the minimum height 𝑥 such that 𝐴𝑥 ≤ 𝑇𝑗 in
𝑂(log(max(𝐻𝑖))) time. The answer is then 𝐵𝑥 + (𝑇𝑗 − 𝐴𝑥) ⋅ (𝑥 − 1). To think about it intuitively,
we have used 𝐴𝑥 throws to get a combined height of 𝐵𝑥, so 𝑇𝑗 − 𝐴𝑥 is the number of throws we have
remaining. Since we have used all throws with height ≥ 𝑥, the best we can do with our remaining
throws is to throw them all to a height of 𝑥 − 1, hence adding (𝑇𝑗 − 𝐴𝑥) ⋅ (𝑥 − 1) to our answer.

If you’re wondering, it’s guaranteed that there are at least 𝑇𝑗 − 𝐴𝑥 throws with height 𝑥 − 1. Assume
that 𝑇𝑗 − 𝐴𝑥 > the number of throws with height 𝑥 − 1. Then, 𝐴𝑥−1 < 𝑇𝑗 would be true, so 𝑥 − 1 (or
less) would actually be the result of the binary search, thus we have reached a contradiction.

Time complexity: 𝑂(𝑁 + max(𝐻𝑖) + 𝑄 ⋅ log(max(𝐻𝑖)))

Python Solution
The code for this solution can be found at the end of this document .

Full

Solution 1
For full points, 𝐻𝑖 can be up to 109, so we can no longer store the prefix sums for each different height.
Instead, we can use coordinate compression to store values in the prefix sum only for the initial heights
given to us. We will first add a “dummy” pinecone with height 0 into 𝐻 , then sort 𝐻 in non-decreasing
order. We’ll also slightly modify our three lists to be as follows:
• 𝐴𝑖 = the number of throws with height > 𝐻𝑖
• 𝐵𝑖 = the sum of heights of throws with height > 𝐻𝑖
• num𝑖 = the number of pinecones with initial height > 𝐻𝑖

We can now calculate them for all 0 ≤ 𝑖 ≤ 𝑁 . Note that the 0-height pinecone has index 0, and the
actual pinecones start at index 1. We now have:
• num𝑖 = 𝑁 − 𝑖
• 𝐴𝑖 = 𝐴𝑖+1 + num𝑖 ⋅ (𝐻𝑖+1 − 𝐻𝑖)
• 𝐵𝑖 = 𝐵𝑖+1 + num𝑖 ⋅ (𝐻𝑖+1(𝐻𝑖+1+1)

2 − 𝐻𝑖(𝐻𝑖+1)
2)

The expression inside brackets in the formula for 𝐵𝑖 calculates the sum of 𝐻𝑖 + 1, 𝐻𝑖 + 2, …, 𝐻𝑖+1.
You can also use the arithmetic sum formula to achieve a simpler expression.

Going back to the cell analogy in Subtask 3, we will have multiple rows with num𝑥 cells each after our
binary search. Let full_rows be the number of full rows we can use, and extra_throws be the number
of remaining throws we have after we use the full rows. We will use the same definition as Subtask 3
for 𝑥.

• full_rows = ⌊𝑇𝑗−𝐴𝑥
num𝑥

⌋

10

• extra_throws = (𝑇𝑗 − 𝐴𝑥) − num𝑥 ⋅ full_rows

The answer is then 𝐵𝑥 + num𝑥 ⋅ (𝐻𝑥(𝐻𝑥+1)
2 − (𝐻𝑥−full_rows)(𝐻𝑥−full_rows+1)

2) + extra_throws ⋅ (𝐻𝑥 −
full_rows). The arithmetic sum formula can again be used for simplification.

Time complexity: 𝑂((𝑁 + 𝑄) log 𝑁)

Python Solution
The code for this solution can be found at the end of this document .

Solution 2 (Briefly)
You may have noticed that the order that we process the scenarios does not matter, as long as we
output the answers in the correct order. It turns out that we can solve the problem efficiently if we
process the scenarios in non-decreasing order of number of throws, and keep track of the sum of throw
heights. This type of solution is called an offline solution.

Using the row/cell analogy in Subtask 3, the idea is to start from the highest row, then keep moving
downwards until we run out of throws. We then add the heights of all the rows we reached to the sum,
which will be stored as the answer for the current scenario. Then, move to the next scenario, but start
from the row we just finished at. We will repeat this until all scenarios have been processed.

The amount of maths required is similar to Solution 1. However, this solution may be easier to im-
plement.

Time complexity: 𝑂((𝑁 + 𝑄) log 𝑁)

C++ Solution
The code for this solution can be found at the end of this document .

11

The Grand Tree
Problem authored by Iván G
https://train.nzoi.org.nz/problems/1330

Subtask 1
In this subtask, the tastiness we are trying to achieve (𝑀) is either 1 or 2.

Note that we must always collect apple 0 which will have a non-zero tastiness (𝑡0). This means the
minimum non-zero tastiness we can ever achieve is the 𝑡0.

If 𝑡0 ≥ 𝑀 then just by picking the first apple we solve the problem and so the answer is 𝑡0.

In this subtask, the only other case possible is when 𝑀 = 2 and 𝑡0 = 1, in this case we just need to get
one more tastiness after picking apple 0. The best option will always be to pick the apple connected
to apple 0 with the minimum tastiness and so the answer is just 𝑡0 + this minimum tastiness. (Note
that this minimum is guaranteed to exist).

Python Solution
N, M = map(int, input().split())
t = list(map(int, input().split()))

if t[0] >= M:
 print(t[0])
else:
 minimum_connected_apple = 2001
 for i in range(N-1):
 x, y = map(int, input().split())
 if x == 0: minimum_connected_apple = min(minimum_connected_apple, t[y])
 if y == 0: minimum_connected_apple = min(minimum_connected_apple, t[x])
 print(t[0] + minimum_connected_apple)

Subtask 2
There are many solutions possible for this subtask. Here we will present two.

Brute Force Solution
The fact that 𝑁 is so small allows us to use very inneficient approaches. Note that the problem can be
boiled down to finding a subset of the available apples with minimum total tastiness 𝐾 such that this
𝐾 ≥ 𝑀 and such that those apples in the subset can be picked without knocking off any other apples.

There are 2𝑁 possible subsets of apples (actually 2𝑁−1 since you must always pick apple 0) so we can
actually iterate over all possible subsets to find the answer, we just need to be able to check that some
subset is valid.

There are many ways of checking if a subset is valid (and efficiency doesn’t matter too much) but the
simplest is as follows: A subset is valid if and only if, for each apple in the subset except for apple 0, its
parent¹ is also in the subset. This works because for every apple 𝑖 in our subset that we want to pick:

¹If you are not familiar with graph theory, you can think of the parent of apple 𝑖 as the apple that must be picked
before picking apple 𝑖.

• If its parent is not in the subset, then by picking apple 𝑖 we will knock its parent apple of its branch.
• If its parent is in the subset, it means we can get to that apple without knocking any apples off and

so we can reach apple 𝑖 by following the branch from its parent to itself.

12

https://train.nzoi.org.nz/problems/1330

With this, we can solve the full problem in 𝑂(2𝑁 ⋅ 𝑁)

Python Solution
Note that this solution is naively implementing the above solution and is actuall 𝑂(2𝑁 ⋅ 𝑁2). As an
extra challenge, can you figure out why, and make it 𝑂(2𝑁 ⋅ 𝑁).

The code for this solution can be found at the end of this document .

Recursive Solution (Briefly)
For any apple 𝑖 we can calculate the set 𝑇𝑖 of all the possible total tastiness values that can be achieved
by picking apple 𝑖, along with any other apple in apple 𝑖’s subtree as follows:

• Initialize 𝑇𝑖 as the set containing only 𝑡𝑖, the tastiness of apple 𝑖.
• For every child 𝑐 of apple 𝑖:

‣ Recursively calculate 𝑇𝑐.
‣ Add 𝑎 + 𝑏 to 𝑇𝑖 for all 𝑎 in 𝑇𝑐 and all 𝑏 already in 𝑇𝑖.

Using this, we can calculate 𝑇0. Then, the answer is simply the smallest value in 𝑇0 greater than or
equal to 𝑀 .

This time complexity of this solution is difficult to estimate but it is roughly 𝑂(𝑁3 ⋅ max(𝑡)2) although
in reality it is much faster for small 𝑁 .

Python Solution
The code for this solution can be found at the end of this document .

Subtask 3
In this subtask, the entire tree forms a line. This means that at any point, there is at most one apple
that we are able to pick. We must pick apple 0 first, and then we can pick apple 1, and then we can
pick apple 2, and so on… .This leads to a very simple greedy solution, we simply pick the only apple
available until the total tastiness reaches 𝑀 .

Python Solution
N, M = map(int, input().split())
t = list(map(int, input().split()))

res = 0
for i in range(N):
 res += t[i]
 if res >= M:
 break

print(res)

Full Solution
You may notice that this problem seems very similar to the classic knapsack problem. In fact it is!
Consider the following similar knapsack problem:

• Given an integer 𝑀 and an array 𝑡 of 𝑁 integers, find the smallest value 𝑥 larger than or equal to
𝑀 such that 𝑥 is the sum of some subset of 𝑡.

This can be solved using dynamic programming. Let’s define the function dp such that dp(𝑖, 𝑚) is the
smallest integer 𝑦 larger than or equal to 𝑚 such that 𝑦 is the sum of some subset of 𝑡[𝑖…]².

²𝑡[𝑖…] denotes the suffix of array 𝑡 that excludes the first 𝑖 elements of 𝑡. Can be denoted by t[i:] in python.

13

By definition, the solution to the knapsack problem is dp(0, 𝑀).

This function has a few trivial base cases.
• dp(𝑖, 𝑚) = 0 if 𝑚 ≤ 0 since 0 can always be formed by adding up zero elements.
• dp(𝑖, 𝑚) = ∞ if 𝑚 > 0 and 𝑖 ≥ 𝑁 since the array t[i:] is empty and so we cannot form positive

elements.

For all other cases, we can define the function recursively. Specifically consider the case where we
want to calculate dp(𝑖, 𝑚). The value of this function is the sum of some subset of 𝑡[𝑖…]. Element 𝑖 is
either in this subset or it isn’t.
• If element 𝑖 is in the subset, then the result is 𝑡𝑖 + dp(𝑖 + 1, 𝑚 − 𝑡𝑖)
• If element 𝑖 is not in the subset, we skip this element and so the result is dp(𝑖 + 1, 𝑚)

Since we want to find the smallest possible valid subset sum, we can define dp(𝑖, 𝑚) as the minimum
of the two values above. So,

dp(𝑖, 𝑚) =

⎩{
⎨
{⎧0 if 𝑚 ≤ 0

∞ if 𝑖 ≥ 𝑁
min(𝑡𝑖 + dp(𝑖 + 1, 𝑚 − 𝑡𝑖), dp(𝑖 + 1, 𝑚)) otherwise

This allows us to solve the knapsack problem by simply evaluating dp(0, 𝑀). Note that this would be
incredibly inefficient as each call to dp makes two more calls to dp resulting in a very large amount of
calls. We can make this much more efficient by caching (also called memoizing) the results of identical
calls to dp. This turns it into an exponential solution into an 𝑂(𝑁 ⋅ 𝑀) solution.

The original problem is incredibly similar to this knapsack problem. The only difference is that if we
don’t pick some apple 𝑖 it locks us out of picking any descendants of apple 𝑖. How can we handle this?
The trick is to first flatten our tree into an array in a very specific way.

Consider the following tree:

5

5

2 7

2

1 9

If we flatten it using a pre-order traversal³, we get the following array:

³In a pre-order traversal, the root is visited first, followed by the child nodes. A normal depth-first search (starting at
the root) is a pre-order traversal.

5 5 2 7 2 1 9

Notice what happened to the green subtree in our flattened tree – it became a contiguous subarry with
the root element at the front. In fact, this will always be true for any subtree in the original tree (no
matter the original tree) – this is a property of a pre-order traversal.

This is hugely advantageous. Remember when we were defining the “dp” function? We said that for
dp(𝑖, 𝑚) we can either take element 𝑖 or not take it. The trick is that before, when we skipped element

14

𝑖, we continued from element 𝑖 + 1. In the actual problem, we want to skip all apples in element 𝑖’s
subtree. Now, this becomes trivial since all these elements are contiguous and occur after element 𝑖.

This means if we transform our tree into an array like above we can use this modified dp formula to
solve the problem:

dp(𝑖, 𝑚) =

⎩{
⎨
{⎧0 if 𝑚 ≤ 0

∞ if 𝑖 ≥ 𝑁
min(𝑡𝑖 + dp(𝑖 + 1, 𝑚 − 𝑡𝑖), dp(next𝑖, 𝑚)) otherwise

Where next𝑖 corresponds to the smallest index greater than 𝑖 than is not in element 𝑖’s subtree. These
can be calculated while performing the pre-order traversal.

Computing one value of the dp function is 𝑂(1) and there are 𝑂(𝑁𝑀) possible sets of arguments
making this a 𝑂(𝑁𝑀) solution.

Python Solution
The code for this solution can be found at the end of this document .

C++ Solution
This solution does the “flattening” implicitly.

The code for this solution can be found at the end of this document .

15

Additional Example Solutions
Betty The Cat 2 Subtask 3 Python Solution
A, B, K = map(int, input().split())

best_diff = K
best_boxes = 0

for i in range(K+1):
 if A * i >= K:
 diff = A * i - K
 if diff < best_diff or diff == best_diff and i < best_boxes:
 best_diff = diff
 best_boxes = i
 else:
 remaining = K - A * i
 b_low = remaining // B
 b_high = remaining // B + 1

 if remaining - b_low * B <= b_high * B - remaining:
 best_b = b_low
 else:
 best_b = b_high

 diff = abs(remaining - best_b * B)
 if diff < best_diff or diff == best_diff and i + best_b < best_boxes:
 best_diff = diff
 best_boxes = i + best_b

print(best_diff, best_boxes)

Betty The Cat 2 Full Python Solution
A, B, K = map(int, input().split())

best_diff = K
best_boxes = 0

for i in range(K+1):
 if A * i >= K:
 diff = A * i - K
 if diff < best_diff or diff == best_diff and i < best_boxes:
 best_diff = diff
 best_boxes = i
 else:
 remaining = K - A * i
 b_low = remaining // B
 b_high = remaining // B + 1

 if remaining - b_low * B <= b_high * B - remaining:
 best_b = b_low
 else:
 best_b = b_high

 diff = abs(remaining - best_b * B)
 if diff < best_diff or diff == best_diff and i + best_b < best_boxes:
 best_diff = diff

16

 best_boxes = i + best_b

print(best_diff, best_boxes)

Betty The Cat 2 Full C++ Solution
#include <bits/stdc++.h>

using namespace std;

int main() {
 long long A, B, K;
 cin >> A >> B >> K;

 if (A > B) swap(A, B);
 pair<long long, long long> best = {K, 0};

 for (int a = 0; a < B; a++) {
 long long lowb = max(0ll, (K - a * A) / B);
 long long highb = lowb + 1;

 best = min(best, {abs(K - a * A - lowb * B), a + lowb});
 best = min(best, {abs(K - a * A - highb * B), a + highb});
 }

 cout << best.first << " " << best.second << endl;
}

Pinecones Subtask 3 Online Python Solution
N, Q = map(int, input().split())
H = list(map(int, input().split()))

heights = [0] * 100001

for h in H:
 heights[h] += 1

A = [0] * 100002
B = [0] * 100002

num = 0
for i in range(100000, -1, -1):
 num += heights[i]
 A[i] = A[i+1] + num
 B[i] = B[i+1] + num * i

for i in range(Q):
 t = int(input())

 lo_x = 0
 hi_x = 100001

 while lo_x != hi_x:
 m = (lo_x + hi_x) // 2

 if A[m] <= t:
 hi_x = m

17

 else:
 lo_x = m+1

 x = lo_x

 if x == 0:
 ans = B[x]
 else:
 ans = B[x] + (t - A[x]) * (x - 1)

 print(ans % 1000000007)

Pinecones Full Python Solution
N, Q = map(int, input().split())
H = list(map(int, input().split()))
H.append(0)
H.sort()

A = [0] * (len(H) + 1)
B = [0] * (len(H) + 1)
num = [0] * (len(H) + 1)

for i in range(len(H) - 1, 0, -1):
 num[i] = num[i+1] + 1
 A[i] = A[i+1] + num[i] * (H[i] - H[i-1])
 B[i] = B[i+1] + num[i] * (H[i] * (H[i] + 1) - H[i-1] * (H[i-1] + 1)) // 2

A[0] = A[1]
B[0] = B[1]

for i in range(Q):
 t = int(input())

 if t > A[0]:
 print(B[0] % 1000000007)
 else:
 lo_x = 0
 hi_x = len(A) - 1

 while lo_x != hi_x:
 m = (lo_x + hi_x) // 2

 if A[m] <= t:
 hi_x = m
 else:
 lo_x = m+1

 x = lo_x
 remaining = t - A[x]
 num_pinecones = num[x] + 1
 base_height = H[x-1]

 full_lines = remaining // num_pinecones
 full_lines_extra = num_pinecones * (base_height * (base_height + 1) - (base_height
- full_lines) * (base_height - full_lines + 1)) // 2

18

 rem = remaining % num_pinecones

 ans = B[x] + full_lines_extra + rem * (base_height - full_lines)
 print(ans % 1000000007)

Pinecones Full Offline C++ Solution
#include <bits/stdc++.h>

using namespace std;

int N, Q;
long long H[100001], T[100000], TSorted[100000];
const int MOD = 1000000007;

int main() {
 cin >> N >> Q;
 for (int i = 1; i <= N; i++) cin >> H[i];
 for (int i = 0; i < Q; i++) {
 cin >> T[i];
 TSorted[i] = T[i];
 }

 sort(H, H + N + 1);
 sort(TSorted, TSorted + Q);

 unordered_map<long long, long long> answers;

 long long currSum = 0;
 long long currThrows = 0;
 int qi = 0;
 for (int i = N; i > 0 && qi < Q; i--) {
 int numPinecones = N - i + 1;
 long long numThrows = numPinecones * (H[i] - H[i-1]);

 while (qi < Q && TSorted[qi] < currThrows + numThrows) {
 long long extra = TSorted[qi] - currThrows;
 long long fullLines = extra / numPinecones;
 long long base = H[i] - fullLines;
 long long remainingThrows = extra % numPinecones;
 long long ans = (currSum + (numPinecones * ((H[i] * (H[i] + 1) - base *
(base + 1)) / 2) % MOD) % MOD + (remainingThrows * base) % MOD) % MOD;
 answers[TSorted[qi++]] = ans;
 }

 currThrows += numThrows;
 currSum = (currSum + (numPinecones * (((H[i] * (H[i] + 1) - H[i-1] * (H[i-1] +
1)) / 2) % MOD)) % MOD) % MOD;
 }

 while (qi < Q) answers[TSorted[qi++]] = currSum;

 for (int i = 0; i < Q; i++) cout << answers[T[i]] << '\n';
}

The Grand Tree Subtask 2 Python Brute Force Solution

19

from itertools import combinations
N, M = map(int, input().split())
t = list(map(int, input().split()))

conn = [[] for _ in range(N)]

for i in range(N-1):
 x, y = map(int, input().split())
 conn[x].append(y)
 conn[y].append(x)

parents = [0] * N

def find_parents(node, parent = 0):
 parents[node] = parent
 for c in conn[node]:
 if c != parent:
 find_parents(c, node)

find_parents(0)

res = 10000
for size in range(1, N+1):
 for subset in combinations(range(N), size):
 tastiness = 0
 for x in subset:
 if parents[x] not in subset:
 break
 tastiness += t[x]
 else:
 if tastiness >= M:
 res = min(res, tastiness)

print(res)

The Grand Tree Subtask 2 Recursive Python Solution
from itertools import combinations
N, M = map(int, input().split())
t = list(map(int, input().split()))

conn = [[] for _ in range(N)]

for i in range(N-1):
 x, y = map(int, input().split())
 conn[x].append(y)
 conn[y].append(x)

def calculate_T(i, parent = 0):
 T_i = {t[i]}

 for c in conn[i]:
 if c == parent: continue
 T_c = calculate_T(c, i)

 T_i = T_i | set(a + b for a in T_c for b in T_i)

20

 return T_i

T_0 = calculate_T(0)
print(min(filter(lambda x: x >= M, T_0)))

The Grand Tree Full Python Solution
import sys
sys.setrecursionlimit(5000)

N, M = map(int, input().split())
t = list(map(int, input().split()))

conn = [[] for _ in range(N)]

for i in range(N-1):
 x, y = map(int, input().split())
 conn[x].append(y)
 conn[y].append(x)

flattened = []
next_array = [-1] * N

def flatten(node, parent = 0):
 idx = len(flattened)
 flattened.append(t[node])

 for c in conn[node]:
 if c == parent:
 continue

 flatten(c, node)

 next_array[idx] = len(flattened)

flatten(0)

cache = [[-1] * (M + 1) for _ in range(N)]

def dp(i, m):
 if m <= 0: return 0
 if i >= N: return 1000000

 if cache[i][m] == -1:
 cache[i][m] = min(dp(next_array[i], m), flattened[i] + dp(i + 1, m - flattened[i]))

 return cache[i][m]

print(dp(0, M))

The Grand Tree Full C++ Solution
#include <bits/stdc++.h>

using namespace std;

int N, M, t[100000], dp[2005][2005];
vector<int> conn[100000];

21

void dfs(int node, int next, int p = -1) {
 int curr_next = next;
 for (int c: conn[node]) {
 if (c != p) {
 dfs(c, curr_next, node);
 curr_next = c;
 }
 }

 for (int m = 0; m <= M; m++) {
 dp[node][m] = min(dp[next][m], t[node] + (m > t[node] ? dp[curr_next][m -
t[node]] : 0));
 }
}

int main() {
 cin >> N >> M;
 for (int i = 0; i < N; i++) cin >> t[i];
 for (int i = 0; i < N-1; i++) {
 int x, y;
 cin >> x >> y;
 conn[x].push_back(y);
 conn[y].push_back(x);
 }

 for (int m = 1; m <= 2000; m++) dp[N][m] = 5000;

 dfs(0, N);

 cout << dp[0][M] << endl;
}

22

Big O Complexity
Computer scientists like to compare programs using something called Big O notation. This works by
choosing a parameter, usually one of the inputs, and seeing what happens as this parameter increases
in value. For example, let’s say we have a list 𝑁 items long. We often call the measured parameter 𝑁 .
For example, a list of length 𝑁 .

In contests, problems are often designed with time or memory constraints to make you think of a more
efficient algorithm. You can estimate this based on the problem’s constraints. It’s often reasonable to
assume a computer can perform around 100 million (100,000,000) operations per second. For example,
if the problem specifies a time limit of 1 second and an input of 𝑁 as large as 100,000, then you know
that an 𝑂(𝑁2) algorithm might be too slow for large 𝑁 since 100,0002 = 10,000,000,000, or 10 billion
operations.

Time Complexity
The time taken by a program can be estimated by the number of processor operations. For example,
an addition 𝑎 + 𝑏 or a comparison 𝑎 < 𝑏 is one operation.

𝑂(1) time means that the number of operations a computer performs does not increase as 𝑁 increases
(i.e. does not depend on 𝑁). For example, say you have a program containing a list of 𝑁 items and
want to access the item at the 𝑖-th index. Usually, the computer will simply access the corresponding
location in memory. There might be a few calculations to work out which location in memory the
entry 𝑖 corresponds to, but these will take the same amount of computation regardless of 𝑁 . Note
that time complexity does not account for constant factors. For example, if we doubled the number of
calculations used to get each item in the list, the time complexity is still 𝑂(1) because it is the same
for all list lengths. You can’t get a better algorithmic complexity than constant time.

𝑂(log 𝑁) time suggests the program takes a constant number of extra operations every time 𝑁 dou-
bles in size. For example, finding a number in a sorted list using binary search might take 3 operations
when 𝑁 = 8, but it will only take one extra operation if we double 𝑁 to 16. As far as efficiency goes,
this is pretty good, since 𝑁 generally has to get very, very large before a computer starts to struggle.

𝑂(𝑁) time means you have an algorithm where the number of operations is directly proportional to
𝑁 . For example, a maximum finding algorithm max() will need to compare against every item in a
list of length 𝑁 to confirm you have indeed found the maximum. Usually, if you have one loop that
iterates 𝑁 times your algorithm is 𝑂(𝑁).

𝑂(𝑁2) time means the number of operations is proportional to 𝑁2 . For example, suppose you had an
algorithm which compared every item in a list against every other item to find similar items. For a list
of 𝑁 items, each item has to check against the remaining 𝑁 − 1 items. In total, 𝑁(𝑁 − 1) checks are
done. This expands to 𝑁2 − 𝑁 . For Big O, we always take the most significant term as the dominating
factor, which gives 𝑂(𝑁2). This is generally not great for large values of 𝑁 , which can take a very
long time to compute. As a general rule of thumb in contests, 𝑂(𝑁2) algorithms are only useful for
input sizes of 𝑁 ≲ 10,000. Usually, if you have a nested loop in your program (loop inside a loop) then
your solution is 𝑂(𝑁2) if both these loops run about 𝑁 times.

23

	Introduction
	Resources
	Cardboard Boxes
	Full Solution
	Python Solution

	Betty The Cat 2
	Subtask 1
	Python Solution

	Subtask 2
	Python Solution

	Subtask 3
	Python Solution

	Full Solution
	Python Solution
	C++ Solution

	Extra fun

	Supply Scheduling
	Subtask 1
	Python Solution

	Subtask 2
	Subtask 3
	Full
	Python Solution
	C++ Solution

	Pinecones
	Subtask 1
	Subtask 2
	Python Solution

	Subtask 3
	Python Solution

	Full
	Solution 1
	Python Solution
	Solution 2 (Briefly)
	C++ Solution

	The Grand Tree
	Subtask 1
	Python Solution

	Subtask 2
	Brute Force Solution
	Python Solution
	Recursive Solution (Briefly)
	Python Solution

	Subtask 3
	Python Solution

	Full Solution
	Python Solution
	C++ Solution

	Additional Example Solutions
	Betty The Cat 2 Subtask 3 Python Solution
	Betty The Cat 2 Full Python Solution
	Betty The Cat 2 Full C++ Solution
	Pinecones Subtask 3 Online Python Solution
	Pinecones Full Python Solution
	Pinecones Full Offline C++ Solution
	The Grand Tree Subtask 2 Python Brute Force Solution
	The Grand Tree Subtask 2 Recursive Python Solution
	The Grand Tree Full Python Solution
	The Grand Tree Full C++ Solution

	Big O Complexity
	Time Complexity

