New Zealand Informatics Competition 2022
Round 2 Solutions

August 7, 2022

Overview

Questions

1. Shopping List

2. Doubles

3. Skill Issue

4. Contest Supervision 111

The solutions to these questions are discussed in detail below. In a few questions
we may refer to the Big O complexity of a solution, e.g. O(N). There is an
explanation of Big O complexity at the end of this document.

Resources

Ever wondered what the error messages mean?
WWw.nzoi.org.nz/nzic/resources/understanding-judge-feedback.pdf
Read about how the server marking works:
WWww.nzoi.org.nz/nzic/resources/how-judging-works-python3.pdf
Ever wondered why your submission scored zero?

Why did I score zero? - some common mistakes

See our list of other useful resources here:

WWw.nzoi.org.nz/nzic/resources

https://www.nzoi.org.nz/nzic/resources/understanding-judge-feedback.pdf
https://www.nzoi.org.nz/nzic/resources/how-judging-works-python3.pdf
https://www.nzoi.org.nz/nzic/resources/why-did-i-score-zero.pdf
https://www.nzoi.org.nz/nzic/resources

© oo ~ (=]

10

11

12

NZIC 2022 Round 2 Solutions — Overview 2

Tips for next time

Remember, this is a contest. The only thing we care about is that your code runs.
It doesn’t need to be pretty or have comments. There is also no need to worry
about invalid input. Input will always be as described in the problem statement.
For example, the code below is not necessary.

def error_handling(prompt) :
while True:
try:
N = int(input (prompt))
if N < 0 or N > 100:
print ('That was not a valid integer!')
else:
return N
except ValueError:
print('Not a valid integer')

There are a few other things students can do to improve their performance in
contests.

Practice getting input

A number of students tripped up on processing input with multiple integers on a
single line. A neat trick for processing this sort of input in Python is to use the
str.split() method and the map() function. The split() method will break up
a string at space characters, returning a list of the words. The map() function can
be used to apply int () to each string in this list, converting them to integers. For
example, suppose we have the following line of input:

1427
We can turn this into a list of integers with the Python statement
my_ints = list(map(int, input().split()))

Notice that we used 1ist (). This is because map() returns us a special generator
object, not a list. However, generator objects are easily converted to lists.

We suggest having a go at some of the NZIC Practice Problems.

© NZOT 2022

https://docs.python.org/3/library/stdtypes.html#str.split
https://docs.python.org/3/library/functions.html#map
https://docs.python.org/3/library/stdtypes.html#str.split
https://docs.python.org/3/library/functions.html#map
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#map
https://train.nzoi.org.nz/problem_sets/296

NZIC 2022 Round 2 Solutions — Overview 3

Move on to the next question

If you are spending too much time on a question, move on. There could be easy
subtasks waiting in the next question. Often, you will think of a solution to
your problem while working on another question. It also helps to come back to a
question with a fresh pair of eyes.

Take time to read the questions

Don’t underestimate the value of taking time to read and understand the question.
You will waste exponentially more time powering off thinking you have the solution
only to discover you missed something obvious.

In the real world, it is very rare to be provided with a problem in a simplistic
form. Part of the challenge with these contests is reading and understanding the
question, then figuring out what algorithm will be needed. Before submitting,
check to make sure you have done everything the question asks you to do.

Test your code first!

It is much more time efficient to test your solutions on your own computer first.
It can take a while to wait for the server to run your code. It is far more efficient
to test it yourself first, submit it, then start reading the next question while you
wait for your previous solution to be marked by the server.

While testing, remember to add some edge case tests. For example, if a question
specifies “1 < N < 107 then try out an input where N = 1. Think of other tricky
inputs that might break your code. Look at the feedback the server is giving
you.

Use a rubber duck

https://en.wikipedia.org/wiki/Rubber_duck_debugging

© NZOI 2022

https://en.wikipedia.org/wiki/Rubber_duck_debugging

© 0 ~ (=}

[
(=)

Shopping List

https://train.nzoi.org.nz/problems/1241

For each item, we should buy as much stock as we can (up to as many as we want)
from the cheaper supermarket. But if there isn’t enough in stock, we need to buy
any remaining items from the more expensive supermarket.

N = int(input())
cost = 0
for _ in range(N):
W,a,x,b,y = map(int, input().split())
if x > y:
a,x,b,y = b,y,a,x
cost += min(w, a) * x
w -= min(w, a)
cost += min(w, b) * y
print(cost)

https://train.nzoi.org.nz/problems/1241

N o o A W N R

Doubles

https://train.nzoi.org.nz/problems/1270

Let a,b, c,d be the strengths of any four contestants, such that a < b < ¢ < d.
There are four possible ways to pair up these contestants:

e (a,b) and (c,d)
e (a,c) and (b,d)
e (a,d) and (b,c)

Notice that the third option is always optimal, since a +b < a+c < a+d <
b+d<c+d anda+b<a+c<b+c<b+d<c+d- (ad) and (bc)
are both at least as strong as than the weakest teams and at most as strong as
the strongest teams from the other two options. If ¢ and d are the weakest and
strongest contestants in the tournament, then this proves that it is always optimal
to pair up players a and d. We can then repeat this process and pair up the
second weakest and second strongest players, and so on until all players are paired
up.

N
S

int (input())

list (map(int,input () .split()))

s.sort()

pairs = []

for i in range(N//2):
pairs.append(s[i] + s[N-1-i])

print (max(pairs) - min(pairs))

https://train.nzoi.org.nz/problems/1270

© oo ~ =] ot - w [V =

-
[=}

Skill Issue

https://train.nzoi.org.nz/problems/1269

Subtask 1

Since all skill points have the same value, we can try all possible combinations in
O(N) time.

N = int(input())
v = list(map(int,input().split()))
best = 0
accuracy = 0
attack = sum(v)
for p in v:
accuracy = min(100, accuracy + p)
attack -= p
best = max(best, accuracy * attack)
print (best)

Subtask 2

Let k be the sum of all skill points, 1+2+- - -+ N. If we ignore the limit on accuracy,
it shouldn’t be too hard to see that to maximise damage, we want accuracy and
attack to be as close as possible to each other — ideally, accuracy and attack both
have a value of k/2, assuming k is even. But it turns out that it is always possible
to select some subset of numbers from 1 to N that sum to k/2. In fact, we can
always select some subset of numbers from 1 to N that sum to any number from
1 to k. The proof is left as an exercise to the reader.

N = int(input())
v = list(map(int,input().split()))

https://train.nzoi.org.nz/problems/1269

10

11

12

13

NZIC 2022 Round 2 Solutions — Skill Issue 7

total = sum(v)

accuracy = min(100, total // 2)
attack = total - accuracy
print(accuracy * attack)

Subtask 3

In this subtask, N is low enough to brute force across all possible combinations.
The time complexity of this solution is O(N x 2V).

import itertools

N = int(input())
v = list(map(int,input() .split()))
total = sum(v)

best = 0
for length in range(N+1):
for comb in itertools.combinations(v, length):
accuracy = sum(comb)
attack = total - attack
best = max(best, min(100, accuracy) * attack)
print (best)

Subtask 4

The full solution requires use of dynamic programming. Firstly, notice that it is
never optimal to have an accuracy value of 200 or greater, since the maximum
value of a skill point is 100, and increasing accuracy above 100 has no effect on
damage. Now, suppose we know all the possible accuracy values that could be
obtained using the first k skill points. Then if we add the (k + 1)th point, we can
update our list of possible accuracy values in a single loop over the 200 possible
values. We can repeat this process for each skill point to determine all possible
accuracy values in O(N) time.

N = int(input())

v = list(map(int, input().split()))

possible = [False] * 200

possible[0] = True # It is always possible to have 0 accuracy

For each skill point, update our list of possible accuracy values
for p in v:

© NZOI 2022

10

11

12

13

14

15

16

17

NZIC 2022 Round 2 Solutions — Skill Issue

for i in range(199, p-1, -1):
possible[i] |= possible[i - p]

total = sum(v)
best = 0
for accuracy in range(200):
if possiblelaccuracy]:
attack = total - accuracy

best = max(best, min(100, accuracy) * attack)

print (best)

© NZOI 2022

Contest Supervision III

https://train.nzoi.org.nz/problems/1267

Subtask 1

In this subtask there is only ever a single contestant. Therefore, you should always
sit in the same column as the contestant, as sitting in any other column will result
you being further away from that contestant.

IS

oo ~ =] t

10

11

12

13

Python Subtask 1 Solution

_dontcare = input()
_dontcare = input()

row, col = input().split()
print(col)

C+++ Subtask 1 Solution

#include <bits/stdc++.h>
using namespace std;
long long N, R, C, row, col;

int main() {
cin>>R>>C>>N;

cin>>row>>col;

cout<<col<<endl;

https://train.nzoi.org.nz/problems/1267

© oo ~ (=]

10

11

12

NZIC 2022 Round 2 Solutions — Contest Supervision 11 10

Subtask 2

In this subtask the number of contestants and the size of the room are relatively
small. We can just try to sit at every possible column and choose which one is
the best. For each column, we’ll calculate the eye strain by looping through each
contestant and choosing the furthest one from us. The distance to each contestant
can be calculated using Pythagoras’ Theorem. Let’s say that we're currently at row
0, column z. Let’s say that a contestant is at row 7, column ¢. Then the distance
from us to that contestant will be y/(c —)2 + (r —0)2 = y/(c —)2 + 2.

So to find the furthest contestant, can we just calculate the distance using the
formula above and pick the one with the greatest distance? Yes - but there’s a
small catch. The locations of the contestants are all integers, which a computer
can store without any issue. However, to find the distance, we have to use the
square root operation, which will may not produce an integer. This result would
have to be stored in a floating-point number, which may result in a rounding
error (see this post for an explanation).

For this subtask, the rounding error may not be an issue, because the distances
are relatively small and therefore the errors would be quite small as well. However,
for future subtasks where the distances could be more than a billion meters, this
becomes a problem. So how do we work around this? Note that for this problem
we don’t actually care what the exact distance to each contestant is - we only care
which contestant has the furthest distance. This means that we can just calculate
(¢ —x)? +1r? - i.e. the square of the distance, as we’'ve removed the square root
- and compare those instead. If a contestant’s squared distance is greater than
another contestant’s, then they must be further away.

Python Subtask 2 Solution

R, C = map(int, input().split())
N = int(input())

students = []

for i in range(N):
r, ¢ = map(int, input().split())
students.append ((r, c))

min_dist = 10000000

best_col 0

for col in range(C):
furthest_student = 0O

© NZOT 2022

https://stackoverflow.com/questions/588004/is-floating-point-math-broken

13

14

15

16

17

18

19

20

21

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

NZIC 2022 Round 2 Solutions — Contest Supervision 11 11

for r, ¢ in students:
dist = (col - c) **x 2 + r **x 2
furthest_student = max(dist, furthest_student)

if furthest_student < min_dist:
min_dist = furthest_student
best_col = col

print (best_col)

C++ Subtask 2 Solution

#include <bits/stdc++.h>
using namespace std;
long long N, R, C, ri, ci;

int main() {
cin>>R>>C>>N;

vector<pair<long long, long long>> points;

for (int i=0; i<N; i++) {
cin>>ri>>ci;
points.emplace_back(ri, ci);

long long min_dist = LLONG_MAX;
long long best_col = 0;
for (int col=0; col<C; col++) {
long long furthest_dist = O;
for (auto point: points) {
long long dist = (col - point.second) * (col - point.second)
— + point.first * point.first;
furthest_dist = max(furthest_dist, dist);

}

if (furthest_dist < min_dist) {
min_dist = furthest_dist;
best_col = col;

© NZOI 2022

31

32

IS

© oo ~ (=2} ot

10

11

12

13

14

15

16

17

NZIC 2022 Round 2 Solutions — Contest Supervision 11 12

cout<<best_col<<endl;

Subtask 3

In this subtask, we can’t use the same strategy of trying out all the possible
columns, as the number of columns is very large. However, the number of rows is
still quite small. Can this help us narrow down the number of columns we have to
try out?

Imagine a situation where there was a contestant at column 0 and a contestant
at column 500,000,000. Should we bother checking if we should sit at column
499,999,999? At that column we are 499,999,999 meters away from the contestant
at column 0, so there must be some other contestant that’s at least that far away
from us on the other side (otherwise we could just move closer to column 0 and
reduce our distance). However, this is impossible as the number of rows is limited
to 1,000 - so the furthest contestant from us on the right side would be at row
1,000, which is closer than 499,999,999 meters away. In general, because of this
property, we only need to search for a small interval around the midpoint of the
lowest and highest numbered columns that are occupied by contestants.

C++4 Subtask 3 Solution

using namespace std;
long long N, R, C, F, ri, ci;

int main() {
cin>>R>>C>>N;

vector<pair<long long, long long>> points;
for (int i=0; i<N; i++) {

cin>>ri>>ci;
points.emplace_back(ri, ci);

pair<long long, long long> min_col_point =
— *min_element (points.begin(), points.end(), [](const auto &a,
«» const auto &b) {return a.second < b.second; });

© NZOT 2022

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

NZIC 2022 Round 2 Solutions — Contest Supervision 11 13

pair<long long, long long> max_col_point =
— *max_element (points.begin(), points.end(), [](const auto &a,
— const auto &b) {return a.second < b.second; });

auto min_col = min_col_point.second;
auto max_col = max_col_point.second;
auto midpoint = (min_col + max_col) / 2;

long long min_dist LLONG_MAX;
long long best_col = 0;
for (int col=midpoint - 2000; col<midpoint + 2000; col++) {
long long max_dist = 0;
for (auto point: points) {
long long dist = (col - point.second) * (col - point.second)
— + point.first * point.first;
max_dist = max(max_dist, dist);

}

if (max_dist < min_dist) {
min_dist = max_dist;
best_col col;

cout<<best_col<<endl;

Subtask 4

We can extend the idea from Subtask 3 of only looking at columns that could be
worth trying out. Let’s pick an arbitrary column c¢. We find the furthest contestant
F from that position, which is d meters away, and observe that C is to our left
(i.e. it’s in a lower numbered column than ¢). What does that tell us? Well,
consider a column ¢,, which is to the right of ¢ (i.e. ¢, > ¢). The distance from
¢, to F' must be greater than d. If F' is also the furthest contestant from c,, then
the eye strain is greater than d. Otherwise, there must be some other contestant
that is even further away from ¢, than F'is, in which case the eye strain is even
greater than d! In both cases, then, the eye strain for column ¢, must be greater
than the eye strain at c.

Therefore, the eye strain for every column to the right of ¢ must be greater than
the eye strain at ¢. That means that there’s no point even trying out any of the
columns to the right of ¢. Similarly, if the furthest column from ¢ is to the right of

© NZOI 2022

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

NZIC 2022 Round 2 Solutions — Contest Supervision 11 14

¢, there’s no point trying out any of the columns to the left of ¢. What if there’s
a tie, and there’s two 'furthest’ contestants that are the same distance on either
side of ¢? Well in that case, every column to our left results in more eye strain,
every column to our right results in more eye strain, so that means that ¢ must be
the best column!

We can use the above observations to binary search for the best column. We keep
an upper and lower bound for the possible best columns, try out a column between
the bounds, and then use that knowledge to narrow the bounds down. Both the
upper and lower bound could potentially be the best column, so we keep narrowing
down the bounds until they’re adjacent and then try out both to see which one’s
better.

Python Subtask 4 Solution

R, C = map(int, input().split())
N = int(input())

points = []
for i in range(N):

r, ¢ = map(int, input().split())
points.append((r, c))

upper 10000000000
lower = 0

def get_distance(col, point):
return (point[1]-col)*(point[1]-col) + point[0]*point [0]

def get_furthest(col):
return max(points, key=lambda point: get_distance(col, point))

while upper - lower > 1:
col = (upper + lower) // 2

furthest_r, furthest_c = get_furthest(col)
if furthest_c < col:

upper = col
else:

lower = col

© NZOI 2022

NZIC 2022 Round 2 Solutions — Contest Supervision 11 15

if get_distance(lower, get_furthest(lower)) <= get_distance(upper,
— get_furthest (upper)):

print (lower)
else:

print (upper)

C++ Subtask 4 Solution

#include <bits/stdc++.h>
using namespace std;

int N, R, C, ri, ci;
vector<pair<long long, long long>> points;

long long get_distance(int col, pair<long long, long long> point) {
return (col - point.second) * (col - point.second) + point.first *
— point.first;

pair<long long, long long> get_furthest(int col) {

long long furthest_dist = O;

pair<int, int> furthest_point;

for (auto point: points) {
long long dist = get_distance(col, point);
if (dist > furthest_dist) {

18

19

20

21

22

23

24

25

27

28

29

30

31

32

33

34

furthest_dist =
furthest_point = point;

return furthest_point;

int main() {
cin>>R>>C>>N;

for (int i=0; i<N; i++) {

cin>>ri>>ci;
points.emplace_back(ri, ci);

int upper 1000000000

© NZOI 2022

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

NZIC 2022 Round 2 Solutions — Contest Supervision 11

int lower = 0;
while (upper - lower > 1) {
int col = (upper + lower) / 2;
long long furthest_col = get_furthest(col).second;
if (furthest_col < col) {
upper = col;
} else {
lower = col;

16

if (get_distance(lower, get_furthest(lower)) <= get_distance(upper,

« get_furthest (upper))) {
cout<<lower<<endl;

} else {
cout<<upper<<endl;

© NZOI 2022

Big O complexity

Computer scientists like to compare programs using something called Big O nota-
tion. This works by choosing a parameter, usually one of the inputs, and seeing
what happens as this parameter increases in value. For example, let’s say we have
a list IV items long. We often call the measured parameter N. For example, a list
of length N.

In contests, problems are often designed with time or memory constraints to make
you think of a more efficient algorithm. You can estimate this based on the
problem’s constraints. It’s often reasonable to assume a computer can perform
around 100 million (100000 000) operations per second. For example, if the prob-
lem specifies a time limit of 1 second and an input of N as large as 100000,
then you know that an O(N?) algorithm might be too slow for large N since
100 000% = 10000 000 000, or 10 billion operations.

Time complexity

The time taken by a program can be estimated by the number of processor opera-
tions. For example, an addition a+b or a comparison a < b is one operation.

O(1) time means that the number of operations a computer performs does not
increase as N increases (i.e. does not depend on N). For example, say you have a
program containing a list of NV items and want to access the item at the i-th index.
Usually, the computer will simply access the corresponding location in memory.
There might be a few calculations to work out which location in memory the entry
1 corresponds to, but these will take the same amount of computation regardless of
N. Note that time complexity does not account for constant factors. For example,
if we doubled the number of calculations used to get each item in the list, the time
complexity is still O (1) because it is the same for all list lengths. You can’t get a
better algorithmic complexity than constant time.

O(log N) time suggests the program takes a couple of extra operations every time

17

NZIC 2022 Round 2 Solutions — Big O complexity 18

N doubles in size.! For example, finding a number in a sorted list using binary
search might take 3 operations when N = 8 but it will only take one extra
operation if we double N to 16. As far as efficiency goes, this is pretty good, since
N generally has to get very, very large before a computer starts to struggle.

O(N) time means you have an algorithm where the number of operations is directly
proportional to N. For example, a maximum finding algorithm max () will need to
compare against every item in a list of length N to confirm you have indeed found
the maximum. Usually, if you have one loop that iterates N times your algorithm

is O(N).

O (N?) time means the number of operations is proportional to N? . For example,
suppose you had an algorithm which compared every item in a list against every
other item to find similar items. For a list of N items, each item has to check
against the remaining N — 1 items. In total, N(IN — 1) checks are done. This
expands to N2 — N. For Big O, we always take the most significant term as the
dominating factor, which gives O(N?). This is generally not great for large values
of N, which can take a very long time to compute. As a general rule of thumb in
contests, O(N?) algorithms are only useful for input sizes of N < 10000. Usually,
if you have a nested loop in your program (loop inside a loop) then your solution
is O(N?) if both these loops run about N times.

More formally, it means there exists some constant ¢ for which the program takes at most ¢
extra operations every time N doubles in size.

© NZOT 2022

	Overview
	Shopping List
	Doubles
	Skill Issue
	Contest Supervision III
	Big O complexity

