
New Zealand Informatics Competition 2022
Round 1 Solutions

July 10, 2022



Overview

Questions

1. Dorothy’s Red Shoes

2. Lost Shoes

3. Camping Trip

4. Holiday Shopping

The solutions to these questions are discussed in detail below. In a few questions
we may refer to the Big O complexity of a solution, e.g. O(N). There is an
explanation of Big O complexity at the end of this document.

Resources

Ever wondered what the error messages mean?

www.nzoi.org.nz/nzic/resources/understanding-judge-feedback.pdf

Read about how the server marking works:

www.nzoi.org.nz/nzic/resources/how-judging-works-python3.pdf

Ever wondered why your submission scored zero?

Why did I score zero? - some common mistakes

See our list of other useful resources here:

www.nzoi.org.nz/nzic/resources

1

https://www.nzoi.org.nz/nzic/resources/understanding-judge-feedback.pdf
https://www.nzoi.org.nz/nzic/resources/how-judging-works-python3.pdf
https://www.nzoi.org.nz/nzic/resources/why-did-i-score-zero.pdf
https://www.nzoi.org.nz/nzic/resources


NZIC 2022 Round 1 Solutions 2

Tips for next time

Remember, this is a contest. The only thing we care about is that your code runs.
It doesn’t need to be pretty or have comments. There is also no need to worry
about invalid input. Input will always be as described in the problem statement.
For example, the code below is not necessary.

1 # Not needed

2 def error_handling(prompt):

3 while True:

4 try:

5 N = int(input(prompt))

6 if N < 0 or N > 100:

7 print('That was not a valid integer!')

8 else:

9 return N

10 except ValueError:

11 print('Not a valid integer')

12 ...

There are a few other things students can do to improve their performance in
contests.

Practice getting input

A number of students tripped up on processing input with multiple integers on a
single line. A neat trick for processing this sort of input in Python is to use the
str.split() method and the map() function. The split() method will break up
a string at space characters, returning a list of the words. The map() function can
be used to apply int() to each string in this list, converting them to integers. For
example, suppose we have the following line of input:

1 4 2 7

We can turn this into a list of integers with the Python statement

my_ints = list(map(int, input().split()))

Notice that we used list(). This is because map() returns us a special generator
object, not a list. However, generator objects are easily converted to lists.

We suggest having a go at some of the NZIC Practice Problems.

© NZOI 2022

https://docs.python.org/3/library/stdtypes.html#str.split
https://docs.python.org/3/library/functions.html#map
https://docs.python.org/3/library/stdtypes.html#str.split
https://docs.python.org/3/library/functions.html#map
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#map
https://train.nzoi.org.nz/problem_sets/296


NZIC 2022 Round 1 Solutions 3

Move on to the next question

If you are spending too much time on a question, move on. There could be easy
subtasks waiting in the next question. Often, you will think of a solution to
your problem while working on another question. It also helps to come back to a
question with a fresh pair of eyes.

Take time to read the questions

Don’t underestimate the value of taking time to read and understand the question.
You will waste exponentially more time powering off thinking you have the solution
only to discover you missed something obvious.

In the real world, it is very rare to be provided with a problem in a simplistic
form. Part of the challenge with these contests is reading and understanding the
question, then figuring out what algorithm will be needed. Before submitting,
check to make sure you have done everything the question asks you to do.

Test your code first!

It is much more time efficient to test your solutions on your own computer first.
It can take a while to wait for the server to run your code. It is far more efficient
to test it yourself first, submit it, then start reading the next question while you
wait for your previous solution to be marked by the server.

While testing, remember to add some edge case tests. For example, if a question
specifies “1 ≤ N ≤ 10” then try out an input where N = 1. Think of other tricky
inputs that might break your code. Look at the feedback the server is giving
you.

Use a rubber duck

https://en.wikipedia.org/wiki/Rubber_duck_debugging

© NZOI 2022

https://en.wikipedia.org/wiki/Rubber_duck_debugging


Flower Garden

https://train.nzoi.org.nz/problems/1257

Subtask 1

In this subtask, all flowers start off as the same colour. To ensure that no two
adjacent flowers share the same colour, we must replace every other flower. If there
are N flowers, then this requires N/2 replacements, rounded down.

1 print(int(input()) // 2)

Subtask 2

In this subtask, it is guaranteed that no flower shares the same colour as both of
is neighbours. Here we can simply count the number of pairs of adjacent flowers
of the same colour – for each pair, we must replace one of these flowers with a
different colour. Note that we don’t care about what the actual replacements are,
and it is always possible to replace a flower with one that does not share the same
colour as any of its neighbours, since there are three possible colours, but each
flower has at most two neighbours.

1 N = int(input())

2 s = input()

3 replacements = 0

4 for i in range(1, N):

5 if s[i] == s[i - 1]:

6 replacements += 1

7 print(replacements)

4

https://train.nzoi.org.nz/problems/1257


NZIC 2022 Round 1 Solutions 5

Subtask 3

Our solution for subtask 2 does not work if there are three or more flowers of
the same colour in a row. For example, with RRR, there are two pairs of adjacent
flowers of the same colour, but we can resolve both with a single replacement of the
middle flower. We can fix this by skipping a flower after counting a pair, because
we can always replace the second flower in the pair with a colour that is not the
same as the next flower’s colour.

1 N = int(input())

2 s = input()

3 replacements = 0

4 i = 1

5 while i < N:

6 if s[i] == s[i - 1]:

7 replacements += 1

8 i += 1

9 i += 1

10 print(replacements)

Alternatively, we can use Python’s str.count() method, since it only counts
non-overlapping substrings.

1 N = int(input())

2 s = input()

3 print(s.count("RR") + s.count("BB") + s.count("GG"))

Another solution is to treat the garden as multiple cases of subtask 1 -– we divide
the N flowers into several groups such that each group only contains a series of
adjacent flowers of a single colour. Then for each group, we need to make X/2
replacements, where X is the size of the group.

1 import itertools

2 N = int(input())

3 s = input()

4 replacements = 0

5 for colour, group in itertools.groupby(s):

6 replacements += len(list(group)) // 2

7 print(replacements)

© NZOI 2022



Lost Shoes

https://train.nzoi.org.nz/problems/1229

Note: all solutions for this problem are in Python.

Subtask 1

In this subtask, all shoes are green. This means that we only have to check if there
are an even number of green shoes - if the number of green shoes is even then
they must be all paired up. Because each green shoe is a single letter (G), we can
just count the length of the input we get, and that will be the number of green
shoes.

To check if that number is odd, we can use themodulo operator. In many languages
(such as Python, C++ and Java), the modulo operator is the % symbol. x%y
divides x by y and returns the remained. For example, 5%2 returns 1 and 4%2
returns 0. If we want to check if x is even, we can just check the value of x%2,
since if the remainder of x divided by 2 is 0 then x must be even. Otherwise, it
must be odd.

To solve this subtask, we can just check if the length of the input modulo 2 is 0,
and then output the corresponding answers:

1 if len(input()) % 2 == 0:

2 print("All paired up!")

3 else:

4 print("A Green shoe has no partner.")

Subtask 2

In this subtask, there’s a few more different kinds of shoes. We can’t just count the
length of the input anymore since not all the shoes are the same color. However,

6

https://train.nzoi.org.nz/problems/1229


NZIC 2022 Round 1 Solutions 7

we can use Python’s built-in str.count() method to count the colors for us (or
std::count if you use C++). We could just count the number of times each color
appears for each of the colors, and check if it’s even:

1 input_string = input()

2

3 paired_up = True

4

5 green_count = input_string.count("G")

6 if green_count % 2 != 0:

7 print("A Green shoe has no partner.")

8 paired_up = False

9

10 black_count = input_string.count("B")

11 if black_count % 2 != 0:

12 print("A Black shoe has no partner.")

13 paired_up = False

14

15 red_count = input_string.count("R")

16 if red_count % 2 != 0:

17 print("A Red shoe has no partner.")

18 paired_up = False

19

20 mustard_count = input_string.count("M")

21 if mustard_count % 2 != 0:

22 print("A Mustard shoe has no partner.")

23 paired_up = False

24

25

26 if paired_up:

27 print("All paired up!")

Note that we also use a variable paired_up to keep track of whether all the colors
have been paired up or not.
This code will pass Subtask 2, but there’s a lot of repeated code in there. A single
typo in any of them could easily lead cause you to fail a test case. We can simplify
this code by just keeping a list of the color letters and names. Then we can just
loop over the list and do our count for each color:

1 input_string = input()

2 colors = [("G", "Green"), ("B", "Black"), ("R", "Red"), ("M",

"Mustard")]↪→

3

4 paired_up = True

© NZOI 2022



NZIC 2022 Round 1 Solutions 8

5 for color_letter, color_name in colors:

6 count = input_string.count(color_letter)

7 if count % 2 != 0:

8 print("A", color_name, "shoe has no partner.")

9 paired_up = False

10

11 if paired_up:

12 print("All paired up!")

Subtask 3

If we try our Subtask 2 approach (simply counting how many times each color
appears) on the Subtask 3 test cases, we’ll get a wrong answer! Why? The issue
is that 3 colours (Black, Brown, and Blue) all include ‘B’ in their colour code. If
we count the number of ‘B’s in the input, then we’ll end up counting all the ‘B’s
in ‘Br’ and ‘Bl’ as well!

We can solve this problem by subtracting the number of ‘Br’s and ‘Bl’s from the
total number of ‘B’s. This gets rid of all the Brown and Blue shoes we incorrectly
counted as Black, and will give us the total number of Black shoes. To keep track
of the counts, we can use a dictionary to store the counts for each color. After
populating the dictionary with the counts of each color, we subtract the count for
Black shoes and then use the same approach as Subtask 2.

1 input_string = input()

2 colors = [("G", "Green"), ("B", "Black"), ("R", "Red"), ("Bl", "Blue"),

("Br", "Brown"), ("M", "Mustard")]↪→

3 counts = {}

4

5 paired_up = True

6 for color_letter, color_name in colors:

7 count = input_string.count(color_letter)

8 counts[color_letter] = count

9

10 counts["B"] -= counts["Bl"] + counts["Br"]

11

12 paired_up = True

13 for color_letter, color_name in colors:

14 count = counts[color_letter]

15 if count % 2 != 0:

16 print("A", color_name, "shoe has no partner.")

17 paired_up = False

© NZOI 2022



NZIC 2022 Round 1 Solutions 9

18

19 if paired_up:

20 print("All paired up!")

© NZOI 2022



NZIC 2022 Round 1 Solutions 10

Alternative solutions

We could instead count up each color manually by looping through each character
in the input string. To differentiate between ‘B’, ‘Bl’ and ‘Br’, we can attempt to
’look ahead’ at the next character. This solution is a bit more efficient, but more
complicated, than the model solution.

1 colours = ["Green","Black","Red","Blue","Brown","Mustard"]

2 shoe_colours = ['G','B','R','Bl','Br','M']

3 shoe_counts = [0,0,0,0,0,0]

4 shoes_in = input()

5

6 i = 0

7 while i < len(shoes_in):

8 if shoes_in[i] == 'G':

9 shoe_counts[0] +=1

10 elif shoes_in[i] == 'R':

11 shoe_counts[2] +=1

12 elif shoes_in[i] == 'M':

13 shoe_counts[5] +=1

14 elif shoes_in[i] == 'B':

15 if i + 1 < len(shoes_in) : # can look ahead safely

16 if shoes_in[i+1] == 'l':

17 shoe_counts[3] +=1

18 i +=1

19 elif shoes_in[i+1] == 'r':

20 shoe_counts[4] +=1

21 i+=1

22 else:

23 shoe_counts[1] +=1

24 else: # last one is B

25 shoe_counts[1] +=1

26 i +=1

27

28 all_paired_up = True

29 for i in range(6):

30 if shoe_counts[i] % 2 != 0:

31 all_paired_up = False

32 colour_of_odd = colours[i]

33 print("A",colour_of_odd, "shoe has no partner.")

34

35 if all_paired_up:

36 print("All paired up!")

© NZOI 2022



Camping Trip

https://train.nzoi.org.nz/problems/1256

Subtask 1

In this subtask, ti ≤ ti+1 for all i. This means that all of the good camping days
form a continuous interval. Let G be the number of good camping days. Then the
largest interval that has more good days than bad days will have G good days, and
up to G − 1 bad days, which is a total of 2G − 1 days. But there are a few edge
cases we need to watch out for – if G = 0, then our answer is 0, and if 2G−1 > N ,
then our answer is N (since the trip cannot go over N days long).

1 N,A,B = map(int, input().split())

2 t = list(map(int, input().split()))

3 good = 0

4 for x in t:

5 if A <= x <= B:

6 good += 1

7 if good == 0:

8 print(0)

9 else:

10 print(min(N, good * 2 - 1))

Subtask 2

This subtask can be solved using a brute-force approach. For each possible starting
day, and each possible ending day, we count the number of good and bad days
within the interval to determine if the trip is valid. The time complexity of this
solution is O(N3).

11

https://train.nzoi.org.nz/problems/1256


NZIC 2022 Round 1 Solutions 12

1 N,A,B = map(int, input().split())

2 t = list(map(int, input().split()))

3 best = 0

4 for start in range(N):

5 for end in range(start, N):

6 good = 0

7 bad = 0

8 for x in t[start:end+1]:

9 if A <= x <= B:

10 good += 1

11 else:

12 bad += 1

13 if good > bad:

14 best = max(best, end - start + 1)

15 print(best)

Subtask 3

This subtask is also solvable using brute-force, but we need a faster solution. Notice
that the innermost for-loop in our subtask 2 solution is recomputing a lot of the
same information. By eliminating this loop, we can improve the time complexity
to O(N2)

1 N,A,B = map(int, input().split())

2 t = list(map(int, input().split()))

3 best = 0

4 for start in range(N):

5 good = 0

6 bad = 0

7 for end in range(start, N):

8 if A <= t[end] <= B:

9 good += 1

10 else:

11 bad += 1

12 if good > bad:

13 best = max(best, end - start + 1)

14 print(best)

© NZOI 2022



NZIC 2022 Round 1 Solutions 13

Subtask 4

Instead of counting good and bad days separately, let’s assign a value of 1 for good
days and −1 for bad days. Then we can determine if an an interval is valid by
computing the sum of values within the interval – if the sum is greater than 0,
then the interval contains more good days than bad days.

Let’s consider the the length of the longest valid interval that ends on day i. Let t
be the sum of values from day 1 to day i. If t > 0, then the answer is i. Otherwise,
we need to subtract some values from the start of the interval to make t positive.
Let f(x) be the length of the smallest possible interval that starts on day 1 and
has a total value of x. If t ≤ 0, then to make t positive, we need to subtract a
total value of t− 1. Thus, the answer must be i− f(t− 1), assuming f(t− 1) < i,
otherwise no valid trip exists ending on day i. We can record all possible values of
f(x) while considering all possible ending days in a single loop over the N days,
so the time complexity of this solution is O(N).

1 N,A,B = map(int, input().split())

2 t = list(map(int, input().split()))

3 total = 0

4 best = 0

5 f = {}

6 for i in range(1, N+1):

7 total += 1 if A <= t[i-1] <= B else -1

8 if total > 0:

9 best = max(best, i)

10 elif total - 1 in f:

11 best = max(best, i - f[total - 1])

12 if total not in f:

13 f[total] = i

14 print(best)

© NZOI 2022



Holiday Shopping

https://train.nzoi.org.nz/problems/1238

The step towards solving this problem is assembling a representation of the graph
/ shopping mall. The representation we get in the input is simply a list of all of
the edges in the graph. As you will soon see, this representation isn’t very easy
(or efficient) to work with. Instead, we create an adjacency list of the graph that
we can use later on.

An adjacency list keeps track of all the vertices (nodes) which share an edge with
each other (neighbours). We keep a list for each node, containing all the neighbours
of the node. For instance, if the vertex/node numbered 0 has two neighbours, 1
and 2, the adjacency list should look like:

1 0: 1, 2

2 1: 0

3 2: 0

(Note that 0 is also listed as neighbours of 1 and 2, since we can travel both ways
along the edges in this problem.)

To assemble the adjacency list, we need to create a 2-dimensional array in Python.
Then, the first dimension of the array refers to each vertex, and the second dimen-
sion stores all of that vertex’s neighbours. For example, the above adjacency list
stored in Python should be:

1 [

2 [1, 2], # Index 0

3 [0], # Index 1

4 [0] # Index 2

5 ]

The code snippet below is one way to do construct an adjacency list in Python.

1 N, E = map(int, input().split())

2 adj_list = [[] for i in range(N)]

14

https://train.nzoi.org.nz/problems/1238


NZIC 2022 Round 1 Solutions 15

3 for i in range(E):

4 A, B = map(int, input().split())

5 adj_list[A].append(B)

6 adj_list[B].append(A)

(You may have stored your neighbours in a different way - if you are interested,
look up adjacency matrices, and compare this strategy to an adjacency list. Which
would be better for this problem, and why?)

Now that we’ve stored the graph, we can focus on completing the problem.

Subtask 1

The basic strategy we use to solve this problem is moving through the graph
systematically, starting at the start vertex and finishing when we reach the exit
vertex.

To solve the problem, we need to keep track of various things.

1. We need to know which vertices we have already visited, so we need a list
visited which stores True if the vertex has been visited, False if not.

2. We need a list of vertices to explore next. We can delete these as we visit
them, and add when we discover new neighbours. This going to be a first-
in-first-out structure called a queue (in Python we can use a deque).

3. As we explore the graph, we need to know how far away from the start
room we are. Since we are only interested in the distance to the exit, our
solution below uses a queue maintaining (room, distance) tuples / pairs,
but note that other implementations might store the distances in a separate
list instead.

We can now traverse (explore) the graph using an algorithm called Breadth-First
Search (BFS). There are some good resources available online if you are interested
in learning more about BFS. The algorithm description is as follows:

1. Add starting vertex to the queue.

2. While the queue has vertices remaining in it:

(a) Take the vertex and its current distance value from the top of the queue,
and store it (make sure it is removed from the queue!)

(b) If the vertex has already been visited, then continue back to 2.

(c) Set the visited value of the vertex to True.

© NZOI 2022

https://docs.python.org/3/library/collections.html#collections.deque


NZIC 2022 Round 1 Solutions 16

(d) For each of the vertex’s neighbours, add the neighbour to the queue
with the current distance increased by one.

The code for the full solution is shown below. Note that there are other algorithms
you can use to solve this problem!

Python Subtask 1 Solution

1 from collections import deque

2

3 N, E = map(int, input().split())

4 adj = [[] for i in range(N)]

5 for i in range(E):

6 A, B = map(int, input().split())

7 adj[A].append(B)

8 adj[B].append(A)

9

10 S,M = map(int,input().split()) # Ignore these for this subtask as S = 0

11

12 q = deque()

13 q.append((0, 1)) # Start at node 0 with a 'distance' of 1 (as we need

to count node 0 towards our visited count)↪→

14 visited = [False] * N

15

16 while len(q) > 0:

17 node, dist = q.popleft()

18 if visited[node]:

19 continue

20 visited[node] = True

21

22 if node == N - 1:

23 # at this point, it is guaranteed that `dist`

24 # is the shortest distance from `0` to `node`

25 print(dist)

26 break

27

28 for neighbour in adj[node]:

29 q.append((neighbour, dist+1))

30 else:

31 print("SELF_ISOLATE")

© NZOI 2022



NZIC 2022 Round 1 Solutions 17

C++ Subtask 1 Solution

1 #include <iostream>

2 #include <vector>

3 #include <queue>

4 #include <algorithm>

5

6 using namespace std;

7

8 vector<int> adj[100001];

9 bool visited[100001];

10

11 int N, E, S, M;

12 int a, b, s;

13

14 void solve() {

15 queue<pair<int, int>> q;

16 q.push(make_pair(0, 1));

17

18 while (!q.empty()) {

19 auto cur = q.front();

20 q.pop();

21

22 int node = cur.first;

23 int dist = cur.second;

24

25 if (visited[node]) {

26 continue;

27 }

28 visited[node] = true;

29

30 if (node == N-1) {

31 cout<<dist<<endl;

32 return;

33 }

34

35 for (auto neighbour : adj[cur.first]) {

36 q.push(make_pair(neighbour, cur.second + 1));

37 }

38 }

39

40 cout<<"SELF_ISOLATE"<<endl;

41 }

© NZOI 2022



NZIC 2022 Round 1 Solutions 18

42

43 int main() {

44 cin>>N>>E;

45 for (int i=0; i<E; i++) {

46 cin>>a>>b;

47 adj[a].push_back(b);

48 adj[b].push_back(a);

49 }

50

51 cin>>S>>M;

52

53 solve();

54 }

Subtask 2

For this subtask M is always either 1 or 0. If M is 1, then we have to avoid visiting
any node that’s currently occupied. If M is 0, then as we’re allowed to be within
0 edges of any node, we can actually still visit any node we want.

How do we ensure we don’t visited any node that’s currently occupied? Recall that
for Subtask 1 we maintained a list to keep track of all the nodes we’ve already
visited. In our BFS algorithm, we avoid visiting any node that’s already been
visited. That means that, if M = 1, we can just set all of the occupied nodes as
’visited’ before starting our BFS, and the BFS will avoid those nodes! That’s all
we need to complete Subtask 2.

Python Subtask 2 Solution

1 from collections import deque

2

3 N, E = map(int, input().split())

4 adj = [[] for i in range(N)]

5 for i in range(E):

6 A, B = map(int, input().split())

7 adj[A].append(B)

8 adj[B].append(A)

9

10 S,M = map(int,input().split())

11

12 visited = [False] * N

13 for x in range(S):

© NZOI 2022



NZIC 2022 Round 1 Solutions 19

14 s = int(input())

15 if M == 1:

16 visited[s] = True

17

18 q = deque()

19 q.append((0, 1)) # Start at node 0 with a 'distance' of 1 (as we need

to count node 0 towards our visited count)↪→

20

21 while len(q) > 0:

22 node, dist = q.popleft()

23 if visited[node]:

24 continue

25 visited[node] = True

26

27 if node == N - 1:

28 # at this point, it is guaranteed that `dist`

29 # is the shortest distance from `0` to `node`

30 print(dist)

31 break

32

33 for neighbour in adj[node]:

34 q.append((neighbour, dist+1))

35 else:

36 print("SELF_ISOLATE")

C++ Subtask 2 Solution

1 #include <iostream>

2 #include <vector>

3 #include <queue>

4 #include <algorithm>

5

6 using namespace std;

7

8 vector<int> adj[100001];

9 bool visited[100001];

10

11 int N, E, S, M;

12 int a, b, s;

13

14 void solve() {

15 queue<pair<int, int>> q;

16 q.push(make_pair(0, 1));

© NZOI 2022



NZIC 2022 Round 1 Solutions 20

17

18 while (!q.empty()) {

19 auto cur = q.front();

20 q.pop();

21

22 int node = cur.first;

23 int dist = cur.second;

24

25 if (visited[node]) {

26 continue;

27 }

28 visited[node] = true;

29

30 if (node == N-1) {

31 cout<<dist<<endl;

32 return;

33 }

34

35 for (auto neighbour : adj[cur.first]) {

36 q.push(make_pair(neighbour, cur.second + 1));

37 }

38 }

39

40 cout<<"SELF_ISOLATE"<<endl;

41 }

42

43 int main() {

44 cin>>N>>E;

45 for (int i=0; i<E; i++) {

46 cin>>a>>b;

47 adj[a].push_back(b);

48 adj[b].push_back(a);

49 }

50

51 cin>>S>>M;

52

53 for (int i=0; i<S; i++) {

54 cin>>s;

55 if (M > 0) {

56 visited[s] = true;

57 }

58 }

59

© NZOI 2022



NZIC 2022 Round 1 Solutions 21

60 solve();

61 }

Subtask 3

For the full solution, we have to avoid going within M-1 edges of any occupied
node. We could first compute all of the nodes that are within M-1 edges of any
occupied nodes, set all of those as visited, and then use our BFS as before. But
how do we know which nodes are within M-1 edges of an occupied node? We
could try to do an individual BFS from every occupied node, marking every node
we visit as occupied, and stopping our BFS when we go past M-1 edges. In the
worst case, M will be large and so each BFS will be O(E). Because we do this for
every shopper, the total complexity will be O(E ∗S) - if both E and S are roughly
100 000, then this will be too slow.

You might be tempted to share the ’visited’ list between the BFS calls for each
shopper. This will ensure you visit each node at most once, as a node marked
as visited in the BFS for one shopper won’t be visited in any later BFS calls
from other shoppers. However, this trick has a problem. Consider the test case
below:

1 13 14

2 0 1

3 1 2

4 2 3

5 3 4

6 4 5

7 1 6

8 6 7

9 7 8

10 8 9

11 9 10

12 5 10

13 10 11

14 6 11

15 11 12

16 2 3

17 4

18 9

The graph in the test case can be visualised below:

© NZOI 2022



NZIC 2022 Round 1 Solutions 22

Nodes 4 and 9 are occupied by shoppers. If we BFS from node 4 first, then we
will mark nodes 2, 3, 4, 5 and 10 as visited. Then, when we BFS from node 9, we
will mark nodes 7, 8 and 9 as visited. We won’t visit node 10 as it’s already been
visited. However, this prevents us from marking node 11 as visited, even though
it’s only 2 edges away from node 9! So even though it’s actually impossible in this
case to get to the end node (because we can’t go through node 11), our proposed
solution will output an incorrect answer of 5.

(You might notice that we would have gotten the correct answer had we done our
first BFS from node 9 and then 4. However, because the numbering of the nodes
is arbitrary, had nodes 4 and 9 been swapped around then you would still have
the same problem.)

So how do we solve that problem in a way that’s fast enough to pass? We can
think of BFS as maintaining a ’frontier’ of nodes that expands outwards as we keep
traversing the graph. Each node in the ’frontier’ (i.e. the queue) will be the same
distance (plus or minus one) as every other node in the frontier. When we start,
the ’frontier’ is just the starting node. But what if we started out with a frontier
containing all of the occupied nodes? In that case, the frontier would expand
outwards from all of the starting nodes. We would effectively be performing S
BFS traversals in parallel ! But because it’s still a single BFS, it would complete
in O(E) time! To achieve this, all we have to do is to modify our original BFS
to start with a queue containing every shopper. Then, we do our BFS as normal,
stopping whenever we go past M − 1 nodes. Finally, we still have to do one last
BFS from node 0 to find out the actual distance.

© NZOI 2022



NZIC 2022 Round 1 Solutions 23

Python Subtask 3 Solution

1 from collections import deque

2

3 N, E = map(int, input().split())

4 adj = [[] for i in range(N)]

5 for i in range(E):

6 A, B = map(int, input().split())

7 adj[A].append(B)

8 adj[B].append(A)

9

10 S,M = map(int,input().split())

11

12 visited = [False] * N

13 q = deque()

14 for x in range(S):

15 s = int(input())

16 q.append((s, 0))

17

18 # Find all of the nodes we aren't allowed to visit

19 while len(q) > 0:

20 node, dist = q.popleft()

21

22 if dist == M:

23 continue

24

25 if visited[node]:

26 continue

27 visited[node] = True

28

29 for neighbour in adj[node]:

30 q.append((neighbour, dist+1))

31

32 # Find the distance between node 0 and N-1

33 q.append((0, 1))

34 while len(q) > 0:

35 node, dist = q.popleft()

36 if visited[node]:

37 continue

38 visited[node] = True

39

40 if node == N - 1:

41 # at this point, it is guaranteed that `dist`

© NZOI 2022



NZIC 2022 Round 1 Solutions 24

42 # is the shortest distance from `0` to `node`

43 print(dist)

44 break

45

46 for neighbour in adj[node]:

47 q.append((neighbour, dist+1))

48 else:

49 print("SELF_ISOLATE")

C++ Subtask 3 Solution

1 #include <iostream>

2 #include <vector>

3 #include <queue>

4 #include <algorithm>

5

6 using namespace std;

7

8 vector<int> adj[100001];

9 bool visited[100001];

10

11 int N, E, S, M;

12 int a, b, s;

13

14 void precomp(vector<int> people) {

15 queue<pair<int, int>> q;

16

17 for (auto person : people) {

18 q.push(make_pair(person, 0));

19 }

20

21 while (!q.empty()) {

22 auto cur = q.front();

23 q.pop();

24 if (cur.second == M) {

25 continue;

26 }

27 visited[cur.first] = true;

28

29 for (auto neighbour : adj[cur.first]) {

30 if (!visited[neighbour]) {

31 q.push(make_pair(neighbour, cur.second + 1));

32 }

© NZOI 2022



NZIC 2022 Round 1 Solutions 25

33 }

34 }

35 }

36

37 void comp() {

38 queue<pair<int, int>> q;

39 q.push(make_pair(0, 1));

40

41 while (!q.empty()) {

42 auto cur = q.front();

43 q.pop();

44 if (cur.first == N-1) {

45 cout<<cur.second<<endl;

46 return;

47 }

48 visited[cur.first] = true;

49

50 for (auto neighbour : adj[cur.first]) {

51 if (!visited[neighbour]) {

52 q.push(make_pair(neighbour, cur.second + 1));

53 }

54 }

55 }

56

57 cout<<"SELF_ISOLATE"<<endl;

58 }

59

60 int main() {

61 cin>>N>>E;

62 for (int i=0; i<E; i++) {

63 cin>>a>>b;

64 adj[a].push_back(b);

65 adj[b].push_back(a);

66 }

67

68 vector<int> people;

69 cin>>S>>M;

70 for (int i=0; i<S; i++) {

71 cin>>s;

72 people.push_back(s);

73 }

74

75 precomp(people);

© NZOI 2022



NZIC 2022 Round 1 Solutions 26

76 comp();

77 }

© NZOI 2022



Big O complexity

Computer scientists like to compare programs using something called Big O nota-
tion. This works by choosing a parameter, usually one of the inputs, and seeing
what happens as this parameter increases in value. For example, let’s say we have
a list N items long. We often call the measured parameter N . For example, a list
of length N .

In contests, problems are often designed with time or memory constraints to make
you think of a more efficient algorithm. You can estimate this based on the
problem’s constraints. It’s often reasonable to assume a computer can perform
around 100 million (100 000 000) operations per second. For example, if the prob-
lem specifies a time limit of 1 second and an input of N as large as 100 000,
then you know that an O(N2) algorithm might be too slow for large N since
100 0002 = 10 000 000 000, or 10 billion operations.

Time complexity

The time taken by a program can be estimated by the number of processor opera-
tions. For example, an addition a+b or a comparison a < b is one operation.

O(1) time means that the number of operations a computer performs does not
increase as N increases (i.e. does not depend on N). For example, say you have a
program containing a list of N items and want to access the item at the i-th index.
Usually, the computer will simply access the corresponding location in memory.
There might be a few calculations to work out which location in memory the entry
i corresponds to, but these will take the same amount of computation regardless of
N . Note that time complexity does not account for constant factors. For example,
if we doubled the number of calculations used to get each item in the list, the time
complexity is still O (1) because it is the same for all list lengths. You can’t get a
better algorithmic complexity than constant time.

O(logN) time suggests the program takes a couple of extra operations every time

27



NZIC 2022 Round 1 Solutions 28

N doubles in size.1 For example, finding a number in a sorted list using binary
search might take 3 operations when N = 8, but it will only take one extra
operation if we double N to 16. As far as efficiency goes, this is pretty good, since
N generally has to get very, very large before a computer starts to struggle.

O(N) time means you have an algorithm where the number of operations is directly
proportional to N . For example, a maximum finding algorithm max() will need to
compare against every item in a list of length N to confirm you have indeed found
the maximum. Usually, if you have one loop that iterates N times your algorithm
is O(N).

O (N2) time means the number of operations is proportional to N2 . For example,
suppose you had an algorithm which compared every item in a list against every
other item to find similar items. For a list of N items, each item has to check
against the remaining N − 1 items. In total, N(N − 1) checks are done. This
expands to N2 − N . For Big O, we always take the most significant term as the
dominating factor, which gives O(N2). This is generally not great for large values
of N , which can take a very long time to compute. As a general rule of thumb in
contests, O(N2) algorithms are only useful for input sizes of N ≲ 10 000. Usually,
if you have a nested loop in your program (loop inside a loop) then your solution
is O(N2) if both these loops run about N times.

1More formally, it means there exists some constant c for which the program takes at most c
extra operations every time N doubles in size.

© NZOI 2022


	Overview
	Flower Garden
	Lost Shoes
	Camping Trip
	Holiday Shopping
	Big O complexity

