
New Zealand Informatics Competition 2021
Round 2 Solutions

May 12, 2021



Overview

Questions

1. Ducks in a Row

2. Chris’ Ducks

3. More Ducks in a Row

4. Duck Latin

5. Ponderous Pondering Ducks

The solutions to these questions are discussed in detail below. In a few questions
we may refer to the Big O complexity of a solution, e.g. O(N). There is an
explanation of Big O complexity at the end of this document.

Resources

Ever wondered what the error messages mean?

www.nzoi.org.nz/nzic/resources/understanding-judge-feedback.pdf

Read about how the server marking works:

www.nzoi.org.nz/nzic/resources/how-judging-works-python3.pdf

Ever wondered why your submission scored zero?

Why did I score zero? - some common mistakes

See our list of other useful resources here:

www.nzoi.org.nz/nzic/resources

1

https://www.nzoi.org.nz/nzic/resources/understanding-judge-feedback.pdf
https://www.nzoi.org.nz/nzic/resources/how-judging-works-python3.pdf
https://www.nzoi.org.nz/nzic/resources/why-did-i-score-zero.pdf
https://www.nzoi.org.nz/nzic/resources


NZIC 2021 R2 Solutions — Overview 2

Tips for next time

Remember, this is a contest. The only thing we care about is that your code runs.
It doesn’t need to be pretty or have comments. There is also no need to worry
about invalid input. Input will always be as described in the problem statement.
For example, the code below is not necessary.

1 # Not needed

2 def error_handling(prompt):

3 while True:

4 try:

5 N = int(input(prompt))

6 if N < 0 or N > 100:

7 print('That was not a valid integer!')

8 else:

9 return N

10 except ValueError:

11 print('Not a valid integer')

12 ...

There are a few other things students can do to improve their performance in
contests.

Practice getting input

A number of students tripped up on processing input with multiple integers on a
single line. A neat trick for processing this sort of input in Python is to use the
str.split() method and the map() function. The split() method will break up
a string at space characters, returning a list of the words. The map() function can
be used to apply int() to each string in this list, converting them to integers. For
example, suppose we have the following line of input:

1 4 2 7

We can turn this into a list of integers with the Python statement

my_ints = list(map(int, input().split()))

Notice that we used list(). This is because map() returns us a special generator
object, not a list. However, generator objects are easily converted to lists.

We suggest having a go at some of the NZIC Practice Problems.

© NZOI 2021

https://docs.python.org/3/library/stdtypes.html#str.split
https://docs.python.org/3/library/functions.html#map
https://docs.python.org/3/library/stdtypes.html#str.split
https://docs.python.org/3/library/functions.html#map
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#map
https://train.nzoi.org.nz/problem_sets/296


NZIC 2021 R2 Solutions — Overview 3

Move on to the next question

If you are spending too much time on a question, move on. There could be easy
subtasks waiting in the next question. Often, you will think of a solution to
your problem while working on another question. It also helps to come back to a
question with a fresh pair of eyes.

Take time to read the questions

Don’t underestimate the value of taking time to read and understand the question.
You will waste exponentially more time powering off thinking you have the solution
only to discover you missed something obvious.

In the real world, it is very rare to be provided with a problem in a simplistic
form. Part of the challenge with these contests is reading and understanding the
question, then figuring out what algorithm will be needed. Before submitting,
check to make sure you have done everything the question asks you to do.

Test your code first!

It is much more time efficient to test your solutions on your own computer first.
It can take a while to wait for the server to run your code. It is far more efficient
to test it yourself first, submit it, then start reading the next question while you
wait for your previous solution to be marked by the server.

While testing, remember to add some edge case tests. For example, if a question
specifies “1 ≤ N ≤ 10” then try out an input where N = 1. Think of other tricky
inputs that might break your code. Look at the feedback the server is giving
you.

Use a rubber duck

https://en.wikipedia.org/wiki/Rubber_duck_debugging

© NZOI 2021

https://en.wikipedia.org/wiki/Rubber_duck_debugging


Ducks in a Row

https://train.nzoi.org.nz/problems/1216

Subtask 1

In this subtask, we only have ducks of a large size. That means the first line will
all be ’L’ and the other two lines will all be underscores. Each line will have NL

characters.

Python Subtask 1 Solution

1 s = int(input())

2 m = int(input())

3 l = int(input())

4

5 print('L' * l)

6 print('_' * l)

7 print('_' * l)

C++ Subtask 1 Solution

1 #include <iostream>

2

3 using namespace std;

4

5 int main() {

6 int s, m, l;

7 cin >> s >> m >> l;

8

9 cout << string(l, 'L') << '\n';

10 cout << string(l, '_') << '\n';

4

https://train.nzoi.org.nz/problems/1216


NZIC 2021 R2 Solutions — Ducks in a Row 5

11 cout << string(l, '_') << '\n';

12 }

Subtask 2

We know that each line is going to have as many characters as the largest amount
of ducks. So, let’s just consider a single line.

If the line needs to have n characters and we have d ducks for this line, that means
the amount of underscores in this line will be n− d. That means, we should have
n−d
2

underscores on either side of the ducks. If n − d is even (that is, divides
perfectly) then it all works out but what if n − d is odd? We can’t have half an
underscore on either side! In this case, we need to round down the number of
underscores on the left side and round up the amount on the right side.

For example, let’s say we have d = 2 ducks for a line and it needs to be n = 5
characters long. Halving n − d = 3 gives us 1.5. The number of underscores on
the left will be 1 and the amount on the right will be 2.

Python Subtask 2 Solution

1 s = int(input())

2 m = int(input())

3 l = int(input())

4

5 def line(n, d, character):

6 # '//' is the integer division operator.

7 # It rounds down the result of the division.

8

9 underscores = n - d

10 left = underscores // 2

11 right = underscores - left

12

13 output = '_' * left

14 output += character * d

15 output += '_' * right

16 print(output)

17

18 n = max([s, m, l])

19 line(n, l, 'L')

20 line(n, m, 'M')

21 line(n, s, 'S')

© NZOI 2021



NZIC 2021 R2 Solutions — Ducks in a Row 6

C++ Subtask 2 Solution

1 #include <iostream>

2 #include <algorithm>

3

4 using namespace std;

5

6 void line(int n, int d, char character) {

7 // Division on integers rounds down in C++.

8 int underscores = n - d;

9 int left = underscores / 2;

10 int right = underscores - left;

11

12 cout << string(left, '_');

13 cout << string(d, character);

14 cout << string(right, '_');

15 cout << '\n';

16 }

17

18 int main() {

19 int s, m, l;

20 cin >> s >> m >> l;

21

22 int n = max({s, m, l});

23 line(n, l, 'L');

24 line(n, m, 'M');

25 line(n, s, 'S');

26 }

© NZOI 2021



Chris’ Ducks

https://train.nzoi.org.nz/problems/1123

Subtask 1

In this subtask, we don’t need to worry about handling days where any duck
is allowed. We can keep track of how many ducks we have for each type and
decrement the tally for the corresponding type for each day. If we ever try to
decrement a tally that is zero then we know we’ve run out of ducks and so that
will be the last day. To calculate the number of remaining ducks we add up all
the remaining tallies for our duck types.

Python Subtask 1 Solution

1 l_days = int(input())

2 [nr, np, nd, ng] = map(int, input().split())

3 s = input()

4

5 last_day = 0

6 for i in range(l_days):

7 if s[i] == 'R':

8 if nr == 0: break

9 nr -= 1

10 elif s[i] == 'P':

11 if np == 0: break

12 np -= 1

13 elif s[i] == 'D':

14 if nd == 0: break

15 nd -= 1

16 elif s[i] == 'G':

17 if ng == 0: break

7

https://train.nzoi.org.nz/problems/1123


NZIC 2021 R2 Solutions — Chris’ Ducks 8

18 ng -= 1

19 last_day = i + 1

20

21 print(last_day)

22 print(nr + np + nd + ng)

C++ Subtask 1 Solution

1 #include <array>

2 #include <iostream>

3 using namespace std;

4

5 int main() {

6 int l;

7 cin >> l;

8 string wants;

9 array<int,4> ducks {};

10 for (int i = 0; i < 4; ++i) {

11 cin >> ducks[i];

12 }

13 cin.ignore();

14 getline(cin, wants);

15 int days = 0;

16

17 for (char type : wants) {

18 if (type == 'R') {

19 if (ducks[0] < 1) break;

20 --ducks[0];

21 } else if (type == 'P') {

22 if (ducks[1] < 1) break;

23 --ducks[1];

24 } else if (type == 'D') {

25 if (ducks[2] < 1) break;

26 --ducks[2];

27 } else if (type == 'G') {

28 if (ducks[3] < 1) break;

29 --ducks[3];

30 }

31 ++days;

32

33 }

34

© NZOI 2021



NZIC 2021 R2 Solutions — Chris’ Ducks 9

35 cout << days << '\n' << ducks[0] + ducks[1] + ducks[2] + ducks[3] <<

'\n';↪→

36 }

Subtask 2

When we encounter a day where we can give any duck (except for goose) to Chris,
we might try to find a way to assign a particular duck. For example, we might give
Chris a rubber duck if we have one available. However, on a later day, we might
need a rubber duck when we don’t have any left and so we might have been better
off giving Chris a plush duck. While this method of managing the assignment of
ducks is doable, there is a simpler way.

Let’s change the problem slightly and imagine that instead of giving Chris a duck
on each day, we just give Chris all the ducks he wants on say, the 10th day. We
know all the ducks with specific types that Chris wants so we can remove those
immediately. That only leaves the days where Chris doesn’t care about the type
of duck we give. As long as we have enough of these ducks remaining (R+P +D,
remember, geese don’t count) then everything is fine and dandy!

For every possible number of days we can check if we can fulfill the above criteria.
The last day where we can will be our chosen result.

Python Subtask 2 Solution

1 l_days = int(input())

2 [nr, np, nd, ng] = map(int, input().split())

3 s = input()

4

5 def test(l_days, nr, np, nd, ng, s, n_days):

6 n_wild = 0

7 for i in range(n_days):

8 if s[i] == 'R': nr -= 1

9 elif s[i] == 'P': np -= 1

10 elif s[i] == 'D': nd -= 1

11 elif s[i] == 'G': ng -= 1

12 elif s[i] == '.': n_wild += 1

13

14 if (

15 nr >= 0 and np >= 0 and

16 nd >= 0 and ng >= 0 and

17 nr + np + nd >= n_wild

© NZOI 2021



NZIC 2021 R2 Solutions — Chris’ Ducks 10

18 ):

19 # Make sure to actually subtract the wildcard ducks!

20 return nr + np + nd + ng - n_wild

21 else:

22 # Return -1 if it's not possible to

23 # give for n_days consecutive days

24 return -1

25

26

27 # Iterate in reverse so we can break immediately

28 # when we find a valid number of days. Remember that

29 # Python ranges are exclusive so we need to add one.

30 for n_days in reversed(range(l_days + 1)):

31 remaining = test(l_days, nr, np, nd, ng, s, n_days)

32 if remaining != -1:

33 print(n_days)

34 print(remaining)

35 break

Subtask 3

Imagine giving ducks for 500,000 days (over a thousand years)! Our solution for
Subtask 2 is too slow because for each day, we need to iterate through all the
previous days. Fortunately, there is a faster way.

We don’t need to recalculate the tallies for every possible number of days. As long
as we keep a running total, we can easily check if we still meet our criteria or break
out if we don’t. You can imagine it as if you ”owe” a certain amount of ducks
to Chris. As long you have enough ducks to fill what you owe, everything works
out!

By the way, you could also adapt Subtask 2’s solution to binary search over the
target number of days. We leave this as an exercise to the reader.

Python Subtask 3 Solution

1 l_days = int(input())

2 [nr, np, nd, ng] = map(int, input().split())

3 s = input()

4

5 n_wild = 0

6 last_day = 0

© NZOI 2021



NZIC 2021 R2 Solutions — Chris’ Ducks 11

7 for i in range(l_days):

8 available = nr + np + nd

9 if s[i] == 'R':

10 if nr == 0: break

11 if available - 1 < n_wild: break

12 nr -= 1

13 elif s[i] == 'P':

14 if np == 0: break

15 if available - 1 < n_wild: break

16 np -= 1

17 elif s[i] == 'D':

18 if nd == 0: break

19 if available - 1 < n_wild: break

20 nd -= 1

21 elif s[i] == 'G':

22 if ng == 0: break

23 ng -= 1

24 elif s[i] == '.':

25 if available < n_wild + 1: break

26 n_wild += 1

27 last_day = i + 1

28

29 print(last_day)

30 print(nr + np + nd + ng - n_wild)

C++ Subtask 3 Solution

1 #include <array>

2 #include <iostream>

3 using namespace std;

4

5 int main() {

6 int l;

7 cin >> l;

8 string wants;

9 array<int,4> ducks {};

10 int quackers_left = 0;

11 for (int i = 0; i < 4; ++i) {

12 cin >> ducks[i];

13 if (i != 3) {

14 quackers_left += ducks[i];

15 }

16 }

© NZOI 2021



NZIC 2021 R2 Solutions — Chris’ Ducks 12

17 cin.ignore();

18 getline(cin, wants);

19 int days = 0;

20

21 for (char type : wants) {

22 if (type != 'G' && quackers_left <= 0) break;

23

24 if (type == 'R') {

25 if (ducks[0] < 1) break;

26 --ducks[0];

27 --quackers_left;

28 } else if (type == 'P') {

29 if (ducks[1] < 1) break;

30 --ducks[1];

31 --quackers_left;

32 } else if (type == 'D') {

33 if (ducks[2] < 1) break;

34 --ducks[2];

35 --quackers_left;

36 } else if (type == 'G') { // goose is not a duck

37 if (ducks[3] < 1) break;

38 --ducks[3];

39 } else { // wildcard

40 --quackers_left;

41 }

42 ++days;

43

44 }

45

46 // return number of days, number of ducks left (incl. geese)

47 cout << days << '\n' << quackers_left+ducks[3] << '\n';

48 }

© NZOI 2021



More Ducks in a Row

https://train.nzoi.org.nz/problems/1212

Subtask 1

In this subtask, there are only two ducks. If we pick a row or column ’outside’ of
both ducks, it will always result in a further distance than picking a row or column
between the two ducks. This makes sense - both ducks will have to move an extra
distance to that row or column, whereas if we pick somewhere between the two
ducks, both ducks are moved towards each other so the total distance is reduced.
Additionally, if we pick, for example, a row between on on the two ducks, it always
results in the same distance. It is always equal to the distance in rows between
the two ducks. Try it for yourself and see why this is! The same logic holds for
columns as well. That means that we have two choices - either the best distance
is the distance in rows, or the distance in columns between the two ducks. We
simply calculate both and output the smaller number.

Python Subtask 1 Solution

1 n = int(input())

2 c1, r1 = list(map(int, input().split()))

3 c2, r2 = list(map(int, input().split()))

4 c_distance = abs(c1-c2)

5 r_distance = abs(r1-r2)

6 print(min(c_distance, r_distance))

C++ Subtask 1 Solution

1 #include <bits/stdc++.h>

2

3 using namespace std;

13

https://train.nzoi.org.nz/problems/1212


NZIC 2021 R2 Solutions — More Ducks in a Row 14

4

5 int main() {

6 int n, x1, y1, x2, y2;

7 cin>>n;

8 cin>>x1>>y1;

9 cin>>x2>>y2;

10 cout<<min(abs(x1-x2), abs(y1-y2))<<endl;

11 }

Subtask 2

In this subtask, there are 200 or less ducks, and every duck’s row and column is
between 0 and 400. Clearly, choosing a row or column outside of that range will
not give us the minimum distance. Instead, we can just try every row and column
within that range and calculate the distance for each. We will output whichever
of those distances is the smallest.

Python Subtask 2 Solution

1 def solve(vals):

2 for i in range(401):

3 total = 0

4 for val in vals:

5 total += abs(val - i)

6 return total

7

8 cols = []

9 rows = []

10 n = int(input())

11

12 for i in range(n):

13 col, row = map(int, input().split())

14 cols.append(col)

15 rows.append(row)

16

17 print(min(solve(cols), solve(rows)))

C++ Subtask 2 Solution

1 #include <bits/stdc++.h>

2

© NZOI 2021



NZIC 2021 R2 Solutions — More Ducks in a Row 15

3 using namespace std;

4

5 long long find_distance(vector<int> vals) {

6 long long best = LLONG_MAX;

7 for (int i=0; i <= 400; i++) {

8 long long total = 0;

9 for (auto val: vals) {

10 total += abs(val - i);

11 }

12 best = min(best, total);

13 }

14 return best;

15 }

16

17 int main() {

18 vector<int> cols;

19 vector<int> rows;

20 int n, col, row;

21

22 cin>>n;

23 for (int i=0; i<n; i++) {

24 cin>>col>>row;

25 cols.push_back(col);

26 rows.push_back(row);

27 }

28

29 cout<<min(find_distance(cols), find_distance(rows))<<endl;

30 }

Subtask 3

If we tried the previous approach for the final subtask, we would have to iterate
through 1, 000, 000, 000 rows and columns. For each of those we would then iterate
through 60, 000 ducks. That means we would have to do on the order of 2 ∗
1, 000, 000, 000 ∗ 60, 000 = 120, 000, 000, 000, 000 operations! That’s far more than
any single computer can do in one second (as of April 2021).

Clearly, we need a better method than trying all of the possible rows and columns.
Let’s say there are 7 ducks, and we start at a column left of all of the ducks -
column −1, for example. Now let’s move right one column. What happens to the
total distance?
There are 7 ducks to the right of us. Therefore, when we move right one column,

© NZOI 2021



NZIC 2021 R2 Solutions — More Ducks in a Row 16

the distance from each duck to us decreases by 1. In other words, the total
distance decreases by 7 ∗ 1 = 7.
If we keep moving right, the distance keeps decreasing by 7 each time until we
reach the first duck. When we move one column left past the first duck, there is
now 1 duck on our left, and 6 ducks on our right. So, our distance to the duck on
our left increases by 1, and our distance to each of the other ducks still decreases
by 1. Therefore, total total distance decrease is −1 + 6 ∗ 1 = 5. This is still a net
decrease, so it makes sense to keep going further right.
Similarly, past the second duck our distance increases by 3 each column. However,
when we get to the middle duck - the fourth duck - things change. There are now
an equal number (3) of ducks to our left and our right. That means that if we
keep going right, there will be more ducks on our left than on our right. In other
words, if we move further right, the total distance will increase. Since we know
this column is has a smaller distance than all the columns to the left, and all the
columns to the right must increase the distance, this column must be the column
that minimises the total distance!
There’s still one catch - since ducks can appear on top of each other, what if there
are several ’duplicate’ columns in the middle? In that case, the assumption that
there are an equal number of ducks to the left and right may not apply, as some
of the ducks aren’t to our left or right, but at the same position as us. However, if
we go to the right of all of those columns, then there will be more columns on the
left than the right, so the distance still decreases. That means the best column is
still any of those duplicates in the middle.
In other words, the optimal column is the median (middle element) of all the ducks’
columns. If we have an even number of columns, then any point in between or on
the two ’middle’ ducks will give the same minimal distance. The exact same logic
applies to the rows. Therefore, we will simply find the distance if we choose the
median row, the distance if we choose the median column, and output the lesser
of those two.

Python Subtask 3 Solution

1 def solve(vals):

2 vals.sort()

3 total = 0

4 median = vals[len(vals)//2]

5 for val in vals:

6 total += abs(val - median)

7 return total

8

9 cols = []

© NZOI 2021



NZIC 2021 R2 Solutions — More Ducks in a Row 17

10 rows = []

11 n = int(input())

12

13 for i in range(n):

14 col, row = map(int, input().split())

15 cols.append(col)

16 rows.append(row)

17

18 print(min(solve(cols), solve(rows)))

C++ Subtask 3 Solution

1 #include <bits/stdc++.h>

2

3 using namespace std;

4

5 long long solve(vector<int> vals) {

6 sort(vals.begin(), vals.end());

7 long long total = 0;

8 int median = vals[vals.size()/2];

9 for (auto val: vals) {

10 total += abs(val - median);

11 }

12 return total;

13 }

14

15 int main() {

16 vector<int> cols;

17 vector<int> rows;

18 int n, col, row;

19

20 cin>>n;

21 for (int i=0; i<n; i++) {

22 cin>>col>>row;

23 cols.push_back(col);

24 rows.push_back(row);

25 }

26

27 cout<<min(solve(cols), solve(rows))<<endl;

28 }

© NZOI 2021



Duck Latin

https://train.nzoi.org.nz/problems/1221

This problem is an example of cryptography - using codes to make messages difficult
for someone else to read. In cryptography, we use a code to encode plaintext (the
message we want to send, eg. in plain English) into ciphertext (the scrambled
message that we actually send). In this problem, we essentially do the opposite
- given some ciphertext, what plaintext could it have originally been? In other
words, how many ways are there to decode the ciphertext?
There are two different encodings - Duck and Goose Latin. Each of these encodings
also have two different rules. To make the following explanation more concise, let’s
name the different rules:

• Duck Latin where the word starts with a consonant - duckCONS

• Duck Latin where the word starts with a vowel - duckVOWEL

• Goose Latin where the word contains no vowels - gooseCONS

• Duck Latin where the word contains vowels - gooseVOWEL

Subtasks 1 and 2

In the first subtask, each word ends in ’onk’. Let’s work backwards and see which
encoding rules could have resulted in a words ending in ’onk’. gooseCONS is an
obvious candidate - if the original work was only consonants then we would end
up with a word that ends in ’onk’. To check this case, we can check if every letter
(excluding the ’onk’) is a consonant - if it is, then this is one possible decoding.
For example, if the encoded word is ’jklonk’, then the original word could have
been ’jkl’.
Both duckCONS and duckVOWEL cannot result in words that end in ’onk’,
as they both result in words that end in ’ck’ (a word that ends in ’uack’ also ends
in ’ck’).

18

https://train.nzoi.org.nz/problems/1221


NZIC 2021 R2 Solutions — Duck Latin 19

gooseVOWEL can also result in a word that ends in ’onk’ ! for example, the
word ’honk’ encoded with gooseVOWEL results in ’holfonk’. We will therefore
also need to check if the word could have been encoded this way. For a word to
have be encoded in gooseVOWEL, it must have contained vowels. Additionally,
after each vowel, we add ’lf’ and that vowel again. How do we check that?
The first vowel in the ciphertext must be followed with ’lf’ and the vowel again.
That means that the second vowel doesn’t need to be followed with the ’lf’ pattern,
as it was added in the encoding process. For example, when ’honk’ is encoded into
’holfonk’, the second vowel in ’holfonk’ isn’t followed by the ’lf’ pattern. However,
the next vowel (if it exists) does need to be followed by that pattern - eg. ’hoonk’
→ ’holfoolfonk’.
Thus, we can iterate through the word - if we find a vowel, we check for the ’lf’
pattern. If it’s valid, we can then skip past the four-letter pattern and repeat. If
it’s not, then the ciphertext can’t have been encoded with gooseVOWEL.
You may have noticed that this solution is actually valid for both subtasks 1 and
2! Unfortunately, the test data for Subtask 1 did not contain cases that tested
for the gooseVOWEL encoding, so solutions that only checked gooseCONS
would also pass. Subtask 1 and 2 are actually effectively equivalent, as they both
require checking for gooseVOWEL and gooseCONS.

Python Subtask 1 & 2 Solution

1 VOWELS = {'a','e','i','o','u'}

2

3 def is_vowel(c):

4 return c in VOWELS

5

6 def gooseCONS(S, L):

7 if L <= 3 or S[-3:] != "onk":

8 return 0

9 elif all(map(lambda c: not is_vowel(c), S[:-3])):

10 return 1

11 else:

12 return 0

13

14 def gooseVOWEL(S, L):

15 index = 0

16 valid = False

17 while index < L:

18 if is_vowel(S[index]):

19 if S[index+1 : index+4] == 'lf' + S[index]:

20 valid = True

© NZOI 2021



NZIC 2021 R2 Solutions — Duck Latin 20

21 index += 4

22 else:

23 valid = False

24 break

25 else:

26 index += 1

27

28 return valid

29

30

31 L = int(input())

32 S = input()

33 print(gooseCONS(S, L) + gooseVOWEL(S, L))

C++ Subtask 1 & 2 Solution

1 #include <iostream>

2 #include <cassert>

3 #include <string>

4 #include <unordered_set>

5 #include <algorithm>

6

7 using namespace std;

8

9 unordered_set<int> VOWELS {'a','e','i','o','u'};

10

11 inline bool is_vowel(char c) {

12 return VOWELS.find(c) != VOWELS.end();

13 }

14

15 int gooseCONS(string S, int L) {

16 if (L <= 3 || S.compare(L-3, 3, "onk") != 0) {

17 return 0;

18 }

19 if (all_of(S.begin(), S.end()-3, [](char c){return !is_vowel(c);}))

{↪→

20 return 1;

21 } else {

22 return 0;

23 }

24 }

25

26 int gooseVOWEL(string S, int L) {

© NZOI 2021



NZIC 2021 R2 Solutions — Duck Latin 21

27 int index = 0;

28 bool valid = false;

29 while (index < L) {

30 if (is_vowel(S[index])) {

31 if (index+3 < L && S[index+1] == 'l' && S[index+2] == 'f' &&

S[index+3] == S[index]) {↪→

32 valid = true;

33 index += 4;

34 } else {

35 valid = false;

36 index = L;

37 }

38 } else {

39 index += 1;

40 }

41 }

42 return valid;

43 }

44

45 int main() {

46 int L;

47 string S;

48 cin>>L>>S;

49 cout << gooseCONS(S, L) + gooseVOWEL(S, L) << endl;

50 }

Subtasks 3 and 4

Now we need to check for the cases where duckVOWEL and duckCONS could
be used. If the ciphertext ends in ’uack’, then duckCONS could have been used.
Working backwards from the ciphertext, how could we generate all the possible
plaintexts?
In duckCONS we take consonants at the start of the word and place them at the
back of the word, then add ’uack’. Therefore, working backwards, we should first
remove the ’uack’. Then, the decodings must come from taking consonants at the
end of the word and moving them back to the start of the word. More specifically,
we should only consider consonants after the last vowel in the word.
Why? Consider the ciphertext ’aintruack’. We first get rid of the ’uack’ to get
’aintr’. Then, working back from the last consonants, we can get:

• ’aintr’ → ’raint’

© NZOI 2021



NZIC 2021 R2 Solutions — Duck Latin 22

• ’aintr’ → ’train’

• ’aintr’ → ’ntrai’

But we can’t keep going and get ’intra’, because then the word would start with
a vowel, so duckCONS would not apply. What that means is that we can just
count all the consonants between the last vowel before the ’uack’ and the ’uack’.
That should be all the possible plaintext words.
But there’s a catch! Take for example the ciphertext ’totuack’. We will calculate
one possible decoding - ’tto’. But the plaintext ’tto’, when encoded with duck-
CONS, will be ’ottuack’ and not ’totuack’. This means that our method is wrong!
Why? duckCONS shifts all consonants before the first vowel to the end of the
word. Because the ciphertext starts with the consonant ’t’, it means that not all
the consonants before the first vowel were shifted. Therefore, the ciphertext must
start with a vowel in order to have been encoded with duckCONS.
But there’s yet another catch! There actually is a case when a ciphertext starts
with a consonant - if the plaintext word only contains consonants. In that case, a
duckCONS encoding wouldn’t shift the consonants at all - after all, there is no
vowel to shift all the consonants behind. Therefore, in order to be valid duck-
CONS, the ciphertext must either:

• Start with a vowel, or

• Contain nothing but consonants before the ’uack’

For ciphertext that ends in ’ck’, we can use a very similar approach. We count
the number of vowels between the last consonant (excluding ’ck’) and the ’ck’. We
also need to make sure that the ciphertext starts with a consonant, or contains
only vowels.
Combining all these methods with those in the previous subtask, we can solve
Subtask 4! Subtask 3 was intended for solutions that were able to find all valid
plaintext but were not efficient enough. For example, some solutions relied on
actually generating all the possible plaintext words. This was not sufficiently
efficient to solve Subtask 4.

Python Subtask 3 & 4 Solution

1 VOWELS = {'a','e','i','o','u'}

2

3 def is_vowel(c):

4 return c in VOWELS

5

6 def duckCONS(S, L):

© NZOI 2021



NZIC 2021 R2 Solutions — Duck Latin 23

7 if L <= 4 or S[-4:] != "uack":

8 return 0

9

10 done, all_consonants = False, False

11 index = L-5

12 while not done:

13 if index < 0:

14 all_consonants = True

15 done = True

16 elif is_vowel(S[index]):

17 done = True

18 else:

19 index -= 1

20

21 if all_consonants:

22 return 1

23 elif not is_vowel(S[0]):

24 return 0

25 else:

26 return L - 5 - index

27

28

29 def duckVOWEL(S, L):

30 if L <= 2 or S[-2:] != "ck":

31 return 0

32

33 done, all_vowels = False, False

34 index = L-3

35 while not done:

36 if index < 0:

37 all_vowels = True

38 done = True

39 elif not is_vowel(S[index]):

40 done = True

41 else:

42 index -= 1

43

44 if all_vowels:

45 return 1

46 elif is_vowel(S[0]):

47 return 0

48 else:

49 return L - 3 - index

© NZOI 2021



NZIC 2021 R2 Solutions — Duck Latin 24

50

51 def gooseCONS(S, L):

52 if L <= 3 or S[-3:] != "onk":

53 return 0

54 elif all(map(lambda c: not is_vowel(c), S[:-3])):

55 return 1

56 else:

57 return 0

58

59 def gooseVOWEL(S, L):

60 index = 0

61 valid = False

62 while index < L:

63 if is_vowel(S[index]):

64 if index+3 < L and S[index+1 : index+4] == 'lf' + S[index]:

65 valid = True

66 index += 4

67 else:

68 valid = False

69 break

70 else:

71 index += 1

72

73 return valid

74

75

76 L = int(input())

77 S = input()

78 assert(len(S) == L)

79 print(duckCONS(S, L) + duckVOWEL(S, L) + gooseCONS(S, L) + gooseVOWEL(S,

L))↪→

C++ Subtask 3 & 4 Solution

1 #include <iostream>

2 #include <cassert>

3 #include <string>

4 #include <unordered_set>

5 #include <algorithm>

6

7 using namespace std;

8

9 unordered_set<int> VOWELS {'a','e','i','o','u'};

© NZOI 2021



NZIC 2021 R2 Solutions — Duck Latin 25

10

11 inline bool is_vowel(char c) {

12 return VOWELS.find(c) != VOWELS.end();

13 }

14

15 int duckCONS(string S, int L) {

16 if (L <= 4 || S.compare(L-4, 4, "uack") != 0) {

17 return 0;

18 }

19 bool done = false;

20 bool all_consonants = false;

21 int index = L-5;

22 while (!done) {

23 if (index < 0) {

24 all_consonants = true;

25 done = true;

26 } else if (is_vowel(S[index])) {

27 done = true;

28 } else {

29 index--;

30 }

31 }

32 if (all_consonants) {

33 return 1;

34 } else if (!is_vowel(S[0])) {

35 return 0;

36 } else {

37 return L - 5 - index;

38 }

39 }

40

41 int duckVOWEL(string S, int L) {

42 if (L <= 2 || S.compare(L-2, 2, "ck") != 0) {

43 return 0;

44 }

45 bool done = false;

46 bool all_vowels = false;

47 int index = L-3;

48 while (!done) {

49 if (index < 0) {

50 all_vowels = true;

51 done = true;

52 } else if (!is_vowel(S[index])) {

© NZOI 2021



NZIC 2021 R2 Solutions — Duck Latin 26

53 done = true;

54 } else {

55 index--;

56 }

57 }

58 if (all_vowels) {

59 return 1;

60 } else if (is_vowel(S[0])) {

61 return 0;

62 } else {

63 return L - 3 - index;

64 }

65 }

66

67 int gooseCONS(string S, int L) {

68 if (L <= 3 || S.compare(L-3, 3, "onk") != 0) {

69 return 0;

70 }

71 if (all_of(S.begin(), S.end()-3, [](char c){return !is_vowel(c);}))

{↪→

72 return 1;

73 } else {

74 return 0;

75 }

76 }

77

78 int gooseVOWEL(string S, int L) {

79 int index = 0;

80 bool valid = false;

81 while (index < L) {

82 if (is_vowel(S[index])) {

83 if (index+3 < L && S[index+1] == 'l' && S[index+2] == 'f' &&

S[index+3] == S[index]) {↪→

84 valid = true;

85 index += 4;

86 } else {

87 valid = false;

88 index = L;

89 }

90 } else {

91 index += 1;

92 }

93 }

© NZOI 2021



NZIC 2021 R2 Solutions — Duck Latin 27

94 return valid;

95 }

96

97 int main() {

98 int L;

99 string S;

100 cin>>L;

101 cin>>S;

102 assert(S.length() == L);

103 cout << duckCONS(S, L) + duckVOWEL(S, L) + gooseCONS(S, L) +

gooseVOWEL(S, L) << endl;↪→

104 }

© NZOI 2021



Ponderous Pondering Ducks

https://train.nzoi.org.nz/problems/1220

Subtask 1

In this subtask, H and W are small so we can simulate the entire grid and the
ducks’ movement upon it. For each duck, we need to check if there’s a duck already
at the starting position (0, 0) and if the duck collides with any existing ducks after
moving a square.

Python Subtask 1

1 [h_height, w_width] = map(int, input().split())

2 n_ducks = int(input())

3

4 occupied = [([False] * w_width) for _ in range(h_height)]

5 for d in range(n_ducks):

6 # This syntax splits a list into the first element and the rest

7 [n_strides, *steps] = list(map(int, input().split()))

8 is_up = True

9

10 x, y = 0, 0

11 collision = occupied[0][0]

12 for step in steps:

13 # Move the duck and check for collisions

14 for offset in range(step):

15 if is_up: y += 1

16 else: x += 1

17

18 if occupied[y][x]:

19 collision = True

28

https://train.nzoi.org.nz/problems/1220


NZIC 2021 R2 Solutions — Ponderous Pondering Ducks 29

20 is_up = not is_up

21

22 # Occupy the final position

23 occupied[y][x] = True

24 if collision: print("OUCH")

25 else: print("smooth swimming")

Subtask 2

Our ”grid” in this subtask is guaranteed to have a height of one. In other words,
it’s a line. That means we only need worry about the ducks’ movement towards
the right.

Let’s say there’s a duck 10 squares right from the starting position. If the final
position of the next duck is 10 squares or greater then we know it must have
collided with the first duck (there’s no other path it could have taken!). Hence, all
we need to do is keep track of the current leftmost duck and compare its position
with subsequent ducks.

Python Subtask 2

1 [h_height, w_width] = map(int, input().split())

2 n_ducks = int(input())

3

4 x_left = (10 ** 9) + 1

5 for d in range(n_ducks):

6 [n_strides, *steps] = map(int, input().split())

7

8 x = 0

9 for i in range(n_strides):

10 x += steps[i * 2 + 1]

11

12 if x >= x_left:

13 print("OUCH")

14 else:

15 print("smooth swimming")

16 x_left = x

© NZOI 2021



NZIC 2021 R2 Solutions — Ponderous Pondering Ducks 30

Subtask 3

In this subtask, H and W are large so, unlike Subtask 1, we can’t simulate the
entire grid. However, N is small. Instead of simulating each grid square we can
store a list of occupied positions. Whenever a duck moves a leg of its route, we
check if it collides with any existing ducks.

Each route leg (for example, 2 up or 3 right) has a starting position and an ending
position. The line connecting these two positions is either vertical or horizontal.
A collision occurs if any duck is sitting on this line.

Python Subtask 3

1 [h_height, w_width] = map(int, input().split())

2 n_ducks = int(input())

3

4 occupied = []

5 for d in range(n_ducks):

6 [n_strides, *steps] = map(int, input().split())

7 is_up = True

8

9 x, y = 0, 0

10 collision = False

11 for step in steps:

12 if is_up:

13 new_y = y + step

14 for other_y, other_x in occupied:

15 if other_x != x: continue

16 if y <= other_y <= new_y:

17 collision = True

18 y = new_y

19 else:

20 new_x = x + step

21 for other_y, other_x in occupied:

22 if other_y != y: continue

23 if x <= other_x <= new_x:

24 collision = True

25 x = new_x

26

27 is_up = not is_up

28

29 occupied.append((y, x))

30 if collision: print("OUCH")

© NZOI 2021



NZIC 2021 R2 Solutions — Ponderous Pondering Ducks 31

31 else: print("smooth swimming")

Subtask 4

In this subtask the number of ducks is much larger, so we can’t just check against
every possible duck’s position.
We know that our duck moves along a series of horizontal and vertical lines. To
check whether this duck will collide with any other duck on those lines, we can
binary search that line. That is, for every row and column, we can keep a list of
all the ducks on that row or column. When we want to see if our duck will collide
with any other duck on a specific row, we binary search that list to see if there are
any ducks between our starting and ending position.
A simple way of doing this is to binary search for the closest duck that is further
away than the starting point. If that duck is closer or at the same spot as our
ending point, then there must be a collision. Thankfully, most languages come
with libraries/modules that can do this for us. For example, python has a bisect

module that provides a bisect_left function. Note that in order for a binary
search to work, the input list must be in sorted order. Therefore, when adding
each duck to its corresponding row and column, we must insert it is sorted order.
The bisect module provides a insort method that does this for us.
So we’ve now made our collision checking much more time efficient, but we’ve in-
troduced a big problem. If we have to store a sorted list for every column and row,
and there are 1,000,000,000 columns and rows, then we will easily run out of mem-
ory - even if all the lists are empty. However, note that many of those columns and
rows won’t ever be occupied by a duck. There are only 10,000 ducks, so there are
only 10,000 different possible columns and 10,000 different rows that can ever be
occupied. To save on memory, we can have a map (or dictionary in Python) that
maps between row/column indexes and the lists for those rows/columns. That
way, we only need to store duck positions for rows and columns that actually have
ducks in them.
What’s the time complexity of this solution? Let M be the maximum value of mi.
For every N ducks we do at most M ’steps’, and for each step we binary search for
ducks. We can binary search through N ducks at most, so this step which takes
O(log(N)) time. So far our complexity is O(N ∗M ∗ log(H)).
However, for each duck we also insert it into to corresponding row and column.
This is an insertion into a list, which can cost O(n) time at worst if the list con-
tains n items. This adds an extra O(N2) cost. Therefore, our total complexity is
O(N ∗M ∗ log(H) + N2).

© NZOI 2021



NZIC 2021 R2 Solutions — Ponderous Pondering Ducks 32

Python Subtask 4 Solution

1 import bisect

2 from collections import defaultdict

3

4 [h_height, w_width] = map(int, input().split())

5 n_ducks = int(input())

6

7 s = ""

8 columns, rows = {}, {}

9 for d in range(n_ducks):

10 [n_strides, *steps] = map(int, input().split())

11 is_up = True

12

13 x, y = 0, 0

14 collision = False

15 for step in steps:

16 if is_up:

17 new_y = y + step

18 if x in columns and not collision:

19 p = bisect.bisect_left(columns[x], y)

20 if p != len(columns[x]):

21 other_y = columns[x][p]

22 if y <= other_y <= new_y:

23 collision = True

24 y = new_y

25 else:

26 new_x = x + step

27 if y in rows and not collision:

28 p = bisect.bisect_left(rows[y], x)

29 if p != len(rows[y]):

30 other_x = rows[y][p]

31 if x <= other_x <= new_x:

32 collision = True

33 x = new_x

34 is_up = not is_up

35

36 # Insert and keep sorted

37 if x not in columns: columns[x] = []

38 if y not in rows: rows[y] = []

39 bisect.insort(columns[x], y)

40 bisect.insort(rows[y], x)

41

© NZOI 2021



NZIC 2021 R2 Solutions — Ponderous Pondering Ducks 33

42 if collision: s += "OUCH\n"

43 else: s += "smooth swimming\n"

44 print(s)

Extra

If you’re using a language that has tree-based set data structures, such as C++
with set or Java with TreeSet, then we can actually improve a little on the Python
solution. Instead of keeping lists for rows and columns, we can keep sets or
TreeSets instead. These structures are implemented as binary search trees, which
not only allow us to search in O(log(n)) time, but allow insertion of elements in
O(log(n)) time as well. Using those instead of Python lists brings our complexity
down to O(N ∗M ∗ log(N)).
We can’t use Python sets because, while those allow us to search for exact matches,
they don’t have the ability to find the closest or next item to the one we searched.
We depend on that ability in our solution. If you’re curious, Python sets are based
on a totally different approach - a hashtable - which you can read about here.

C++ Extra

1 #include <iostream>

2 #include <unordered_map>

3 #include <set>

4

5 using namespace std;

6

7 int main() {

8 // If you are using C++ style input/output this

9 // will improve its throughput significantly

10 cin.tie(nullptr);

11 ios::sync_with_stdio(false);

12

13 int h_height, w_width, n_ducks;

14 cin >> h_height >> w_width >> n_ducks;

15

16 unordered_map<int, set<int>> columns, rows;

17 for (int duck = 0; duck < n_ducks; ++duck) {

18 int n_strides; cin >> n_strides;

19

20 int x = 0, y = 0;

21 bool collision = false;

© NZOI 2021

https://www.hackerearth.com/practice/data-structures/hash-tables/basics-of-hash-tables/tutorial/


NZIC 2021 R2 Solutions — Ponderous Pondering Ducks 34

22 for (int stride = 0; stride < n_strides; ++stride) {

23 int up, right; cin >> up >> right;

24

25 // Upwards

26 int new_y = y + up;

27 auto it_up = columns[x].lower_bound(y);

28 if (it_up != columns[x].end())

29 if (y <= *it_up && *it_up <= new_y)

30 collision = true;

31 y = new_y;

32

33 // Rightwards

34 int new_x = x + right;

35 auto it_right = rows[y].lower_bound(x);

36 if (it_right != rows[y].end())

37 if (x <= *it_right && *it_right <= new_x)

38 collision = true;

39 x = new_x;

40 }

41

42 rows[y].insert(x);

43 columns[x].insert(y);

44 if (collision) cout << "OUCH\n";

45 else cout << "smooth swimming\n";

46 }

47 }

© NZOI 2021



Big O complexity

Computer scientists like to compare programs using something called Big O nota-
tion. This works by choosing a parameter, usually one of the inputs, and seeing
what happens as this parameter increases in value. For example, let’s say we have
a list N items long. We often call the measured parameter N . For example, a list
of length N .

In contests, problems are often designed with time or memory constraints to make
you think of a more efficient algorithm. You can estimate this based on the
problem’s constraints. It’s often reasonable to assume a computer can perform
around 100 million (100 000 000) operations per second. For example, if the prob-
lem specifies a time limit of 1 second and an input of N as large as 100 000,
then you know that an O(N2) algorithm might be too slow for large N since
100 0002 = 10 000 000 000, or 10 billion operations.

Time complexity

The time taken by a program can be estimated by the number of processor opera-
tions. For example, an addition a+b or a comparison a < b is one operation.

O(1) time means that the number of operations a computer performs does not
increase as N increases (i.e. does not depend on N). For example, say you have a
program containing a list of N items and want to access the item at the i-th index.
Usually, the computer will simply access the corresponding location in memory.
There might be a few calculations to work out which location in memory the entry
i corresponds to, but these will take the same amount of computation regardless of
N . Note that time complexity does not account for constant factors. For example,
if we doubled the number of calculations used to get each item in the list, the time
complexity is still O (1) because it is the same for all list lengths. You can’t get a
better algorithmic complexity than constant time.

O(logN) time suggests the program takes a couple of extra operations every time

35



NZIC 2021 R2 Solutions — Big O complexity 36

N doubles in size.1 For example, finding a number in a sorted list using binary
search might take 3 operations when N = 8, but it will only take one extra
operation if we double N to 16. As far as efficiency goes, this is pretty good, since
N generally has to get very, very large before a computer starts to struggle.

O(N) time means you have an algorithm where the number of operations is directly
proportional to N . For example, a maximum finding algorithm max() will need to
compare against every item in a list of length N to confirm you have indeed found
the maximum. Usually, if you have one loop that iterates N times your algorithm
is O(N).

O (N2) time means the number of operations is proportional to N2 . For example,
suppose you had an algorithm which compared every item in a list against every
other item to find similar items. For a list of N items, each item has to check
against the remaining N − 1 items. In total, N(N − 1) checks are done. This
expands to N2 − N . For Big O, we always take the most significant term as the
dominating factor, which gives O(N2). This is generally not great for large values
of N , which can take a very long time to compute. As a general rule of thumb in
contests, O(N2) algorithms are only useful for input sizes of N . 10 000. Usually,
if you have a nested loop in your program (loop inside a loop) then your solution
is O(N2) if both these loops run about N times.

1More formally, it means there exists some constant c for which the program takes at most c
extra operations every time N doubles in size.

© NZOI 2021


	Overview
	Ducks in a Row
	Chris' Ducks
	More Ducks in a Row
	Duck Latin
	Ponderous Pondering Ducks
	Big O complexity

