
New Zealand Informatics Competition 2020
Round 3 Solutions

January 19, 2021

Overview

Questions

1. Mental A

2. Nail Polish

3. Bytecoin

4. Diversity

5. Sort Recovery

The solutions to these questions are discussed in detail below. In a few questions
we may refer to the Big O complexity of a solution, e.g. O(N). There is an
explanation of Big O complexity at the end of this document.

Resources

Ever wondered what the error messages mean?

www.nzoi.org.nz/nzic/resources/understanding-judge-feedback.pdf

Read about how the server marking works:

www.nzoi.org.nz/nzic/resources/how-judging-works-python3.pdf

See our list of other useful resources here:

www.nzoi.org.nz/nzic/resources.html

1

https://www.nzoi.org.nz/nzic/resources/understanding-judge-feedback.pdf
https://www.nzoi.org.nz/nzic/resources/how-judging-works-python3.pdf
https://www.nzoi.org.nz/nzic/resources.html

NZIC 2020 R3 Solutions — Overview 2

Tips for next time

Remember, this is a contest. The only thing we care about is that your code runs.
It doesn’t need to be pretty or have comments. There is also no need to worry
about invalid input. Input will always be as described in the problem statement.
For example, the code below is not necessary.

1 # Not needed

2 def error_handling(prompt):

3 while True:

4 try:

5 N = int(input(prompt))

6 if N < 0 or N > 100:

7 print('That was not a valid integer!')

8 else:

9 return N

10 except ValueError:

11 print('Not a valid integer')

12 ...

There are a few other things students can do to improve their performance in
contests.

Practice getting input

A number of students tripped up on processing input with multiple integers on a
single line. A neat trick for processing this sort of input in Python is to use the
str.split() method and the map() function. The split() method will break up
a string at space characters, returning a list of the words. The map() function can
be used to apply int() to each string in this list, converting them to integers. For
example, suppose we have the following line of input:

1 4 2 7

We can turn this into a list of integers with the Python statement

my_ints = list(map(int, input().split()))

Notice that we used list(). This is because map() returns us a special generator
object, not a list. However, generator objects are easily converted to lists.

We suggest having a go at some of the NZIC Practice Problems.

c© NZOI 2020

https://docs.python.org/3/library/stdtypes.html#str.split
https://docs.python.org/3/library/functions.html#map
https://docs.python.org/3/library/stdtypes.html#str.split
https://docs.python.org/3/library/functions.html#map
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#map
https://train.nzoi.org.nz/problem_sets/296

NZIC 2020 R3 Solutions — Overview 3

Move on to the next question

If you are spending too much time on a question, move on. There could be easy
subtasks waiting in the next question. Often, you will think of a solution to
your problem while working on another question. It also helps to come back to a
question with a fresh pair of eyes.

Take time to read the questions

Don’t underestimate the value of taking time to read and understand the question.
You will waste exponentially more time powering off thinking you have the solution
only to discover you missed something obvious.

In the real world, it is very rare to be provided with a problem in a simplistic
form. Part of the challenge with these contests is reading and understanding the
question, then figuring out what algorithm will be needed. Before submitting,
check to make sure you have done everything the question asks you to do.

Test your code first!

It is much more time efficient to test your solutions on your own computer first.
It can take a while to wait for the server to run your code. It is far more efficient
to test it yourself first, submit it, then start reading the next question while you
wait for your previous solution to be marked by the server.

While testing, remember to add some edge case tests. For example, if a question
specifies “1 ≤ N ≤ 10” then try out an input where N = 1. Think of other tricky
inputs that might break your code. Look at the feedback the server is giving
you.

Use a rubber duck

https://en.wikipedia.org/wiki/Rubber_duck_debugging

c© NZOI 2020

https://en.wikipedia.org/wiki/Rubber_duck_debugging

Mental A

https://train.nzoi.org.nz/problems/1177

We can keep a variable that stores our answer so far, and then add, subtract,
or multiply each input number to that variable. We also need to keep track of
which operation we need to apply between the answer so far and the next number.
A simple way to do this is with an integer variable, where the value 0 represents
addition, 1 represents subtraction, and 2 represents multiplication. We can change
the value of this variable after each operation to reflect the next operation that
should be performed.

One thing to watch out for is that the first addition is done between the first and
second value, and not between the first value and our answer variable. Adding
the first value to the answer variable (and then multiplying the answer with the
second value) was a common bug among some submissions.

Python Example 1

1 N = int(input())

2 result = int(input())

3 state = 0

4 for i in range(N-1):

5 x = int(input())

6 if state == 0:

7 result = result + x

8 state = 1

9 elif state == 1:

10 result = result - x

11 state = 2

12 elif state == 2:

13 result = result * x

14 state = 0

15 print(result)

4

https://train.nzoi.org.nz/problems/1177

NZIC 2020 R3 Solutions — Mental A 5

Python Example 2

1 N = int(input())

2 r = int(input())

3 for i in range(N-1):

4 x = int(input())

5 r = [r+x, r-x, r*x][i % 3] # Look into modular arithmetic in Python

6 print(r)

C++ Example 1

1 #include <iostream>

2 using namespace std;

3

4 int main ()

5 {

6 int N, total=0;

7 cin >> N >> total;

8 for (int i=0; i < N-1; i++) {

9 int num, type = i % 3;

10 cin >> num;

11 if (type == 0) {

12 total += num;

13 } else if (type == 1) {

14 total -= num;

15 } else { // type == 2

16 total *= num;

17 }

18 }

19 cout << total << endl;

20 }

C++ Example 2

1 #include <iostream>

2 using namespace std;

3

4 int main ()

5 {

6 int N, total=0;

7 cin >> N >> total;

8 for (int i=0, num=0, type=0; i < N; cin >> num, type = i++ % 3) {

9 if (type == 2) total *= num;

c© NZOI 2020

NZIC 2020 R3 Solutions — Mental A 6

10 else total += type ? -num : num;

11 }

12 cout << total << endl;

13 }

c© NZOI 2020

Nail Polish

https://train.nzoi.org.nz/problems/1176

We first check if the colour name of the polish used on the big toe has a repeated
letter. A set will help us here - if we add all letters for the big toe colour into
the set, it will only contain the unique letters in that colour. That is, a set will
get rid of all repeated letters. Therefore, if the number of characters in the set is
equal to the number of characters in the colour, then there cannot be any repeated
letters in the colour as the set did not get rid of any. Similarly, if the number of
characters in the set is less than the number of characters in the colour, then the
colour must have repeated characters.

If the big toe colour has have repeated characters, then we check if each of the other
four toes has an odd number of letters. If that is the case, then the combination
is ’best’, otherwise, it must be ’bad’. If the big toe colour does not repeated
characters, then we check if the four toe colours are in decreasing length order -
that is, that for each toe, the next toe’s colour is shorter. If this is the case, then
the combination is ’ok’, otherwise it is ’bad’.

Note - to check if a number is odd, we can use the modulo operator (%), which
gives the remainder of the division between two numbers. We simply check if our
number modulo 2 is 1, or 0. This operator can also help simplify our logic in the
previous problem - can you see how?

Python Example

1 a, b, c, d, e = [input() for _ in range(5)]

2

3 if len(set(a)) < len(a):

4 # first color has repeated character

5 if all(len(x) % 2 == 1 for x in [b,c,d,e]):

6 print("best")

7 else:

7

https://train.nzoi.org.nz/problems/1176
https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/what-is-modular-arithmetic
https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/what-is-modular-arithmetic

NZIC 2020 R3 Solutions — Nail Polish 8

8 print("bad")

9 else:

10 # check if lengths in ascending order

11 if len(b) > len(c) > len(d) > len(e):

12 print("ok")

13 else:

14 print("bad")

C++ Example

1 #include <iostream>

2 #include <string>

3 #include <unordered_set>

4

5 using namespace std;

6

7 int main ()

8 {

9 string big_toe, other_toe;

10 cin >> big_toe;

11 unordered_set<char> used_chars;

12 for (auto& c : big_toe) {

13 // does the character 'c' already exist in the set?

14 if (used_chars.count(c)) {

15 // repeat found, check for oddness

16 for (int i = 0; i < 4; i++) {

17 cin >> other_toe;

18 // check for even lengths on other toes

19 if (other_toe.length() % 2 == 0) {

20 cout << "bad" << endl;

21 return 0;

22 }

23 }

24 cout << "best" << endl;

25 return 0;

26 }

27 used_chars.insert(c);

28 }

29

30 // no repeated letters, length must strictly decrease

31 int previous_length = 21; // max length = 20 chars

32 for (int j = 0; j < 4; j++) {

33 cin >> other_toe;

c© NZOI 2020

NZIC 2020 R3 Solutions — Nail Polish 9

34 int len = other_toe.length();

35 if (len >= previous_length) {

36 cout << "bad" << endl;

37 return 0;

38 }

39 previous_length = len;

40 }

41 cout << "ok" << endl;

42 return 0;

43 }

c© NZOI 2020

Bytecoin

https://train.nzoi.org.nz/problems/1174

Note that since si ≤ bi for all i, we can never profit from buying and selling a
bytecoin on the same day. Thus, we should never sell any bytecoins on the first
day, or buy any bytecoins on the last day.

Subtask 1

For subtask 1, there are always only two days. Clearly, we can make a profit only
if s2 > b1. For each bytecoin we buy, we would make s2 − b1 dollars of profit.
Thus, if s2 > b1, we should always buy as many bytecoins as we can, and then sell
them all on day 2. Otherwise, we cannot make any profit, and our final answer is
C.

1 N, C = map(int, input().split())

2 buys = list(map(int, input().split()))

3 sells = list(map(int, input().split()))

4 money = max(C, C % buys[0] + C // buys[0] * sells[1])

5 print(money)

Subtask 2

For subtask 2, the buy prices are equal to sell prices on all days. Let’s denote
pi = si = bi. Now, consider any two consecutive days, day x and x + 1.

If px > px+1, then it is never optimal to hold any bytecoins at the end of day x.
For example, suppose we held K bytecoins at the end of day x. Instead, it would
be better to sell them for all px dollars each and then buy them back the next day
at a cheaper price of px+1 dollars each, resulting in a profit of K × (px+1 − px)
dollars, while still ending with the same number of bytecoins.

10

https://train.nzoi.org.nz/problems/1174

NZIC 2020 R3 Solutions — Bytecoin 11

On the other hand, if px < px+1, then it is always optimal to hold as many bytecoins
as we can at the end of day x.

So, for every two consecutive days, if px > px+1, we should do nothing. But if
px < px+1, we should buy as many bytecoins as we can on day x, and then sell
them all on day x + 1, for a profit of bD/pxc × (px+1 − px) (where D is the most
dollars we can have at the start of day px). Note that we might end up buying the
same number of bytecoins back on day x + 1, if px+1 < px+2, but since bi = si, we
do not lose any profit by doing so.

1 N, money = map(int, input().split())

2 buys = list(map(int, input().split()))

3 sells = list(map(int, input().split()))

4 for buy, sell in zip(buys, sells[1:]):

5 if buy < sell:

6 money += money // buy * (sell - buy)

7 print(money)

Subtask 3

There are a few different ways to solve this problem, but the simplest approaches
use the following observations:

1. On any given day, we should either buy as many bytecoins as we
can, or sell all of our bytecoins, or do nothing. If we can make profit
from buying and selling a single bytecoin, we would clearly be losing profit
by not buying the maximal amount of bytecoins.

2. If it’s optimal to buy bytecoins on any given day, we should not
buy any more bytecoins until we sell them. Otherwise, it would have
been better to just buy all of our bytecoins on whichever day was cheaper.
Similarly, if it’s optimal to sell bytecoins on any given day, we should
sell all of them. If it’s optimal to sell a bytecoin, then either (1) we will
never buy bytecoins after that, or (2) the next time we buy bytecoins, the buy
price must have decreased below the current sell price (otherwise it would
have been better to just hold our bytecoin instead of selling it). If the future
buy price decreases below the current sell price, then it’s obviously better to
have sold all of our bytecoins, as we could then buy them back at a cheaper
rate.

c© NZOI 2020

NZIC 2020 R3 Solutions — Bytecoin 12

An alternative approach

Let’s consider the first possible day on which we can sell bytecoins to make profit.
Suppose this is day x. Then, this must be the first day where the sell price, sx, is
greater than the minimum buy price across all previous days, min(b1, b2, . . . , bx−1).
Is it optimal to make this trade?

1. Suppose on the next day, that the buy price, bx+1, is lower than the current
sell price, sx. Then, it must have been optimal to sell on day x, as we could
then buy back any sold bytecoins for a cheaper price.

2. Suppose on the next day, that the sell price, sx+1 increases above the current
sell price. Then we would always make more profit selling our bytecoins on
day x + 1 instead of day x.

3. In all other cases, the next buy price must be higher than the current sell
price, and the sell price must be lower than the current sell price. We can
ignore such days entirely – it is never optimal to buy on day x + 1 (as it
would have been better to hold on day x instead of selling), and it is never
optimal to sell on day x + 1 (as we would have made more selling on day x
instead).

Our solution keeps track of the minimum buy price we have seen so far (since our
last sell), until we reach a higher sell price that would allow us to make profit. We
always make profitable trades as soon as we can. To account for the case where
the sell price increases before the buy price decreases, we set the initial “minimum
buy price” to our sell price, giving us the option to “buy back” our sold bytecoins
at no loss.

1 N, money = map(int, input().split())

2 buys = list(map(int, input().split()))

3 sells = list(map(int, input().split()))

4 min_buy = buys[0]

5 for buy, sell in zip(buys, sells):

6 min_buy = min(min_buy, buy)

7 if min_buy < sell:

8 money += money // min_buy * (sell - min_buy)

9 min_buy = sell

10 print(money)

c© NZOI 2020

Diversity

https://train.nzoi.org.nz/problems/1173

Subtask 1

We can take a brute-force approach, repeatedly incrementing N until it no longer
contains any consecutive repeated digits. To do this, we can check for diversity
by comparing each character (digit) in the input string to its neighbour. If a digit
matches its neighbour, the stirng is not diverse. Otherwise, if no digit matches its
neighbour, the number must be diverse. Below is an example.

Subtask 1 Python Example

1 def is_diverse(N):

2 # Create (a, b) pairs for each character paired with its neighbour

3 # (offset by 1).

4 for a,b in zip(str(N), str(N)[1:]):

5 # If a is the same as its neighbour, the string is

6 # not diverse so return False

7 if a == b:

8 return False

9 # Otherwise, the string must be diverse

10 return True

11

12 N = int(input())

13 while not is_diverse(N):

14 N += 1

15 print(N)

It can be proved that for any integer N , the smallest diverse number not less than N
is always less than 2N , and since N has log10N digits, the time complexity of this
solution is O(N logN). For larger N , there are much more efficient solutions.

13

https://train.nzoi.org.nz/problems/1173

NZIC 2020 R3 Solutions — Diversity 14

Subtask 2

In this subtask, all digits of N are guaranteed to be the same. To gain more points,
you might use the Subtask 1 solution for N ≤ 100, 000 and handle this special case
for larger numbers. Instead of incrementing the number N as for Subtask 1, it
more effective to look at the single digits in each place value. For example, let
N1 = 333333. Since the first two 3s are the highest place value, we must consider
changing one of them. To ensure the next diverse number is as close to N1 as
possible, we must leave the first 3 the same. If we increment the first 3 to 4 then
we will miss a lower diverse number. Instead, we increment the second 3 so that
the next closest diverse number must begin with 34.... Since any choice of the
remaining digits will not make the diverse number less than N1, we must choose
the lowest value for the remaining digits. In the case of N1, the next lowest diverse
number is, therefore, 340101. Generalising this approach leads to a solution for
Subtask 2.

However, there is an edge case to consider. For example, N2 = 999. Here, we
cannot increment any digits in-place. So, if N is a number of all 9s, the next
lowest diverse number needs an extra digit of the next highest place value. This
operation is often called a ’carry’. The next highest diverse number of N2 would,
therefore, be 1010. Using the Subtask 1 solution for N <= 100, 000 and this
approach for Subtask 2, you can obtain a score of 50% on this problem.

Subtask 3

We can find a diverse number that is greater than or equal to N by only looking
at the individual digits of N . As for Subtask 2, we must consider the case where
resolving a repeat number 9 requires us to carry an increment to the next highest
place value. However, unlike Subtask 2, the digits are not all the same. Hence, we
might arrive at a case where N3 = 9899. Here, the two highest place value digits
98... are different. Instead, it is the two lowest place value 9s which requires us
to increment the 8 to a 9 which then creates a repeated value. The next diverse
number is, therefore, 10101 for this case.

There are a number of ways that students solved this problem. For example, a
program can look for a repeating digit, fix it while increasing the number’s value as
little as possible, then ’restart’ the search for repeating digits again. Since, in the
worst case, we might change a digit every two digits or so, the number of restarts
is proportional to the number of digits, log10N . From the last digit we change, the
remaining digits are set to the lowest value combination of diverse digits, which is
a repeating pattern of 0 and 1. The overall time complexity for this approach is

c© NZOI 2020

NZIC 2020 R3 Solutions — Diversity 15

O
(
log2N

)
, which is still acceptable if we are only talking in the order of 10 digits.

Some coded examples are given below.

Another solution is to start at the lowest place value digit (the end digit) and work
backwards towards the highest place value digit. If we encounter a repeat digit,
we attempt to increment the lowest place value of the two repeat digits we find.
However, if that digit is a 9, we must carry the increment to the next highest place
value. If the next highest place value is also a 9, we must continue the carry to the
next highest place value. If incrementing the next highest place value via a carry
also creates a repeated digit (as with N3) then we must attempt to increment again,
and carry if we cannot increment. You may realise, though, that stopping here
would give a number that is too high and also potentially leave behind repeat digits
which are unresolved, meaning the result is not a diverse number. Indeed, it is only
the changed digit of highest place value (the last one we were forced to increment)
that we care about. The remaining digits of lower place value are replaced with
an alternating 0101.. pattern such to minimise the value of the diverse number.
If we change no digits during our scan then N is already diverse, so we need not
change any digits. This approach is O (logN) time, which is slightly better, but
perhaps more difficult to write. For this problem the improvement does not make
a difference but for super long numbers (such as in Diversity 2) it does. See the
latter examples below for how this logic might be implemented.

Subtask 3 Python Example 1

1 N = input()

2 while True:

3 for idx in range(len(N)-1):

4 # find duplicates

5 if N[idx] == N[idx+1]:

6 # fix duplicate

7 # Use the int() function to handle overflows and

8 # set the remaining digits to all 0

9 pair_index = idx + 2

10 N = str(int(N[:pair_index])+1) + "0"*(len(N)-pair_index)

11

12 # Restart the search for duplicates

13 break

14 else:

15 # If the string has no duplicates, we are finished

16 break

17 print(N)

c© NZOI 2020

https://train.nzoi.org.nz/problems/1205

NZIC 2020 R3 Solutions — Diversity 16

Subtask 3 C++ Example 1

1 #include <iostream>

2 #include <string>

3

4 using namespace std;

5

6 int main ()

7 {

8 string num;

9 cin >> num;

10

11 auto it = num.begin();

12 while (it < num.end()-1) {

13 // find duplicate

14 if (*it == *(it+1)) {

15 int origonal_length = num.size();

16 int pair_index = it-num.begin() + 2;

17

18 // fix duplicate

19 num = to_string(std::stoi(num.substr(0, pair_index)) + 1);

20 int carry = num.size() - pair_index;

21

22 // pad the rest with zeros, to be fixed later

23 num.resize(origonal_length + carry, '0');

24

25 // restart

26 it = num.begin();

27 } else {

28 // keep searching

29 it++;

30 }

31 }

32 cout << num << endl;

33 }

c© NZOI 2020

NZIC 2020 R3 Solutions — Diversity 17

Subtask 3 Python Example 2

1 N = list("0" + input()). # Add leading zero for overflow

2 turn = len(N) # Remember location of last changed digit

3 carry = False # Carry an increment to a higher place value

4

5 # Iterate backwards

6 for i in range(len(N)-1, -1, -1):

7 if N[i] < '9':

8 same = i > 0 and N[i-1] == N[i]

9 # For repeat characters (and carries) then increment the digit

10 if carry or same:

11 N[i] = chr(ord(N[i]) + 1)

12 turn = i+1

13 # Continue to carry?

14 if carry and i > 0:

15 carry = N[i-1] == N[i]

16 elif N[i-1] == '9':

17 carry = True

18

19 # Set all digits below the last changed digits to '010..' pattern

20 for j in range(turn, len(N)):

21 N[j] = chr(ord("0") + (N[j-1] == '0'))

22

23 # Don't print leading zero if it remains

24 print("".join(N[1:]) if N[0] == '0' else "".join(N))

Subtask 3 C++ Example 2

1 #include <iostream>

2 #include <string>

3

4 using namespace std;

5

6 int main ()

7 {

8 string num;

9 cin >> num;

10

11 num = "0" + num;

12 auto turn = num.end();

13 bool carry = false;

14

c© NZOI 2020

NZIC 2020 R3 Solutions — Diversity 18

15 for (auto it = num.rbegin(); it < num.rend(); it++) {

16 // Can we increment?

17 if (*it < '9') {

18 // Should we increment?

19 if (carry || (it != num.rend()-1 && *(it+1) == *it)) {

20 *it += 1;

21 // Convert from reverse iterator to normal

22 // iterator with .base(). Usually a +1 is

23 // needed, but because the 0/1 conversion

24 // below works from the next lowest place

25 // value we also -1 which cancles to 0.

26 turn = it.base();

27 // If incrementing creates a duplicate then

28 // we must carry the increment to the next

29 // place value.

30 if (carry && it != num.rend()-1) carry = *(it+1) == *it;

31 }

32 } else if (*(it+1) == '9') {

33 // A 9 cannot be incremented so carry the

34 // increment to the next higher place value.

35 carry = true;

36 }

37 }

38

39 // Work back for all place values lower than the highest

40 // place value we changed and replace with the minimal

41 // alternating 0/1 pattern. E.g. 33999999 -> 34010101.

42 for (;turn < num.end(); turn++) {

43 *turn = '0' + (*(turn-1) == '0');

44 }

45

46 // Don't print leading zero if it remains

47 if (num[0] == '0') {

48 cout << num.substr(1, num.size()-1) << endl;

49 } else {

50 cout << num << endl;

51 }

52 }

c© NZOI 2020

Sort Recovery

https://train.nzoi.org.nz/problems/1178

Subtask 1

We first need to identify the primary key: the first column used to sort the rows.
We know that this primary column must be in sorted order, otherwise another
column must have been the primary key. We can check whether a column is
sorted in a particular order by checking if every adjacent pair or values in the
column is in that order, or is ’tied’ (has two equal values). If we apply this to both
columns, we can determine which is sorted, and therefore which is the primary key
(if both columns are sorted, then we can pick either of them to be the primary
key).
Now, we only need to determine whether the secondary column was used to sort
the rows in ascending or descending order. Note that the secondary column’s
sort order would only have been applied to pairs of rows that were ’tied’ in the
primary column - rows that are already sorted in the primary column will not be
affected by the secondary column’s sort order. To find the secondary column’s sort
order, we go through every group of such tied rows and check their values in the
secondary column; if those not tied, then their sort order must be the sort order
of the secondary column as a whole. If all pairs in the secondary column are tied,
then it does not matter whether it was ascending or descending - it would not have
affected the table, so we can choose either order.
For an example, consider the table:
row col1 col2
0 2 5
1 2 5
2 2 4
3 1 3
4 1 3

19

https://train.nzoi.org.nz/problems/1178

NZIC 2020 R3 Solutions — Sort Recovery 20

The column 1 must be the primary key, as it is in descending order (each value
is less than or equal to the previous value, so each adjacent pair is in descending
order). Then, there are three pairs of tied rows: rows (0 & 1), (1 & 2), and (3
& 4). The first pair gives us no information on the ordering of column 2, as the
corresponding values in column 2 are also tied at a value of 5. However, the second
tied pair, rows 1 & 2, has a descending pair in column 2: 5, followed by 4. Thus,
its sort order must be descending, as the descending order broke the tie between
rows 1 and 3. Since a valid sort order is guaranteed, we don’t need to check any
remaining pairs, as we know they must follow the same pattern.

Python Subtask 1 Solution

1 R, C = map(int, input().split())

2 table = []

3 for row in range(R):

4 table.append(list(map(int, input().split())))

5

6 # Find primary column and its order

7 if all(table[r+1][0] >= table[r][0] for r in range(R-1)):

8 primary_col = 0

9 print(1, "asc")

10 elif all(table[r+1][0] <= table[r][0] for r in range(R-1)):

11 primary_col = 0

12 print(1, "desc")

13 elif all(table[r+1][1] >= table[r][1] for r in range(R-1)):

14 primary_col = 1

15 print(2, "asc")

16 else:

17 primary_col = 1

18 print(2, "desc")

19

20 secondary_col = 1 if primary_col == 0 else 0

21

22 for r in range(R-1):

23 if table[r+1][primary_col] == table[r][primary_col]: #If pair of

rows is tied in the primary column↪→

24 if table[r+1][secondary_col] < table[r][secondary_col]: # Check

if pair is descending in secondary column↪→

25 print(secondary_col+1, "desc")

26 break

27 else: # Look into for/else loop in Python

28 # No pairs were descending, so must be ascending

c© NZOI 2020

NZIC 2020 R3 Solutions — Sort Recovery 21

29 print(secondary_col+1, "asc")

Subtask 2

In this subtask, R and C are both very small. Thus, we can simply try out every
possible sort order and see if it is valid. To check if a sort order is valid, we need
to attempt to sort the table according to that sort order. If the resulting order
of the rows matches their order in the original table, then we know that this sort
order is correct; otherwise, it is invalid (note that we are guaranteed that at least
one of the options we try will be valid).
This leads to a O(C!∗ 2C ∗ (C ∗R logR)) algorithm, as we try every possible order
of columns (C! possible permutations), and for each of those, every possible choice
of ascending / descending orderings (2C possible combinations). The C ∗ R logR
factor is from sorting the table each time (R logR for sorting complexity, multi-
plied by C for the number of elements in each row that need comparing). With
the worst case of R == C == 5, this gives about 100,000 operations, which is well
within a one second time limit.

Python Subtask 2 Solution

1 import itertools

2 import copy

3

4 R, C = map(int, input().split())

5 table = []

6 for row in range(R):

7 table.append(list(map(int, input().split())))

8 original_table = copy.deepcopy(table)

9

10 A = itertools.permutations(range(C))

11 B = itertools.product([1, -1], repeat=C)

12 for order, directions in itertools.product(A, B):

13 for i,j in zip(order, directions):

14 table.sort(key=lambda x: x[i]*j)

15 if original_table == table:

16 for i,j in zip(reversed(order), reversed(directions)):

17 print(i+1, ["asc", "desc"][j == -1])

18 break

c© NZOI 2020

NZIC 2020 R3 Solutions — Sort Recovery 22

Subtask 3

From Subtask 1, we know how to check if a column can be used as the primary
key, and that if multiple choices are available, we can pick any one of them.
We can continue similarly to find every following key in order. For the secondary
key, we only need to check if the column is sorted within each pair of rows that
have the same value in the primary key column. In other words, for adjacent rows
that have different primary key values, the order of their secondary key values is
irrelevant, as it is only used in case of ties. Only the pairs of rows are still tied so
far require the secondary (or subsequent) keys to break the tie, so we only need to
check those pairs of rows.
This leads to an O(R∗C2) algorithm, where we repeatedly scan all the columns to
find one that can be picked as the next sort key. Finding the next sort key requires
us to check every remaining column, and check whether it would be a valid choice.
To check validity, we must go through every as-yet tied pair of rows in the column
and check whether it is sorted in our current column. Once we find a column that
’breaks’ a remaining tie, that column must be the next sort key. We continue until
we have found the ordering of every column.
This means that finding the next sort key is O(C ∗R), and we must repeat this C
times (to get all C columns) for a O(C2 ∗R) solution.

C++ Subtask 3 Solution

1 #include <bits/stdc++.h>

2 using namespace std;

3

4 int R,C;

5 vector<vector<int>> table;

6

7 int main() {

8 scanf("%d%d",&R,&C);

9 table.resize(R, vector<int>(C));

10 for(int i = 0; i < R; i++) {

11 for(int j = 0; j < C; j++) {

12 scanf("%d",&table[i][j]);

13 }

14 }

15 set<int> unused_cols; // The columns for which we haven't determined

a sort order/priority↪→

16 for(int i = 0; i < C; i++) unused_cols.insert(i);

17

c© NZOI 2020

NZIC 2020 R3 Solutions — Sort Recovery 23

18 // Currently tied rows. An integer r in this vector represents the

adjacent pair of rows (r, r+1)↪→

19 vector<int> tied_rows;

20 for(int i = 0; i < R-1; i++) tied_rows.push_back(i);

21

22 while(!unused_cols.empty()) {

23 int col = -1;

24 for(int c : unused_cols) {

25 // If every tied row is in ascending order

26 if(all_of(tied_rows.begin(), tied_rows.end(), [&c](int r){

return table[r+1][c] >= table[r][c]; })) {↪→

27 // The row must be the next key, and sorted ascending

28 cout << c+1 << " asc" << endl;

29 col = c;

30 break;

31 }

32 // If every tied row is in descending order

33 if(all_of(tied_rows.begin(), tied_rows.end(), [&c](int r){

return table[r+1][c] <= table[r][c]; })) {↪→

34 // The row must be the next key, and sorted descending

35 cout << c+1 << " desc" << endl;

36 col = c;

37 break;

38 }

39 }

40 // We have now determined the order of this column, remove it

from unused_cols↪→

41 unused_cols.erase(col);

42 // The pairs of rows that were tie-broken by this column are not

longer tied↪→

43 // so should not be considered in the next iteration.

44 // next_rows will contain only the pairs of rows that are still

tied↪→

45 vector<int> next_rows;

46 for(int r : tied_rows) {

47 if(table[r+1][col] == table[r][col]) next_rows.push_back(r);

48 }

49 tied_rows = next_rows;

50 }

51 }

c© NZOI 2020

NZIC 2020 R3 Solutions — Sort Recovery 24

Subtask 4

To efficiently detect when a column becomes valid as a sort key, we can keep a
count of the number of adjacent values in the column that are in ascending order,
and the number of adjacent values that are in descending order. When either
counts reach 0, we can use that column as a sort key - all adjacent values are
now either all ascending or all descending, so the entire column is sorted. Note
that these counts only involve the adjacent values that still need tie-breaking, as
explained in subtask 3.
Every time we find the next sort key column, we iterate over the pairs of adjacent
rows that have different values in that column. Because we only care about the
pairs that still need tie-breaking, we can now ignore those un-tied pairs, and for
each remaining column, we subtract 1 from its appropriate counter if the corre-
sponding pair of values in the column was out of order. We need to track which
adjacent pairs of rows have been processed this way and only process each pair
once, to avoid double-subtracting. One way we can do this is to use a list of pairs
of rows that are still valid to be processed in the future. For each column, the list
consists of all currently tied pairs, and we then process only the pairs in the list
on the next column.
It will take C iterations of the main loop to order all C columns. In each iteration,
we will loop through at most C other columns to find the next valid key. Addition-
ally, in each iteration, we will loop through every still-tied pair of rows (of which
there are at most R). So far, this gives us a complexity of O(C ∗ (R + C)). For
some of the rows each iteration, we will also have to loop through every column
to update the counts. However, for any row, we can do this only once, as this
only occurs when the row first becomes un-tied, so will not be processed in later
iterations. Thus, we only perform at most O(R ∗ C) count-updates throughout
the entire program. This ensures the time complexity is O(C ∗ (R + C) + R ∗ C)
= O(C ∗ (R + C)).

C++ Full Solution

1 #include <bits/stdc++.h>

2 using namespace std;

3

4 int R,C;

5 vector<vector<int>> table;

6

7 int main() {

8 // Read input

9 scanf("%d%d",&R,&C);

c© NZOI 2020

NZIC 2020 R3 Solutions — Sort Recovery 25

10 table.resize(R, vector<int>(C));

11 for(int i = 0; i < R; i++) {

12 for(int j = 0; j < C; j++) {

13 scanf("%d",&table[i][j]);

14 }

15 }

16

17 set<int> unused_cols; // The columns for which we haven't determined

a sort order/priority↪→

18 for(int i = 0; i < C; i++) unused_cols.insert(i);

19

20 // Currently tied rows. An integer r in this vector represents the

adjacent pair of rows (r, r+1)↪→

21 vector<int> tied_rows;

22 for(int i = 0; i < R-1; i++) tied_rows.push_back(i)

23

24 vector<int> asc_counts(C);

25 vector<int> desc_counts(C);

26

27 // Initialise ascending/descending counts for every row

28 for(int r = 0; r < R-1; r++) {

29 for(int c = 0; c < C; c++) {

30 if(table[r+1][c] > table[r][c]) asc_counts[c]++;

31 if(table[r+1][c] < table[r][c]) desc_counts[c]++;

32 }

33 }

34

35 while(!unused_cols.empty()) {

36 int col = -1;

37 // Find a column that can be used as the next key

38 for(int c : unused_cols) {

39 if(desc_counts[c] == 0) { // No descending pairs, so

column must be in ascending order↪→

40 cout << c+1 << " asc" << endl;

41 col = c;

42 break;

43 }

44 if(asc_counts[c] == 0) { // No ascending pairs, so column

must be in descending order↪→

45 cout << c+1 << " desc" << endl;

46 col = c;

47 break;

48 }

c© NZOI 2020

NZIC 2020 R3 Solutions — Sort Recovery 26

49 }

50 assert(col != -1);

51 unused_cols.erase(col);

52 vector<int> next_rows;

53 for(int r : tied_rows) {

54 // If the pair is still tied, add it to the rows that must

be checked next iteration↪→

55 if(table[r+1][col] == table[r][col]) next_rows.push_back(r);

56 else { // Row is no longer tied

57 for(int c : unused_cols) {

58 if(table[r+1][c] > table[r][c]) asc_counts[c]--;

// Pair is in descending order, so decrement

column's ascending count

↪→

↪→

59 if(table[r+1][c] < table[r][c]) desc_counts[c]--;

// Pair is in ascending order, so decrement

column's descending count

↪→

↪→

60 }

61 }

62 }

63 tied_rows = next_rows;

64 }

65 }

c© NZOI 2020

Big O complexity

Computer scientists like to compare programs using something called Big O nota-
tion. This works by choosing a parameter, usually one of the inputs, and seeing
what happens as this parameter increases in value. For example, let’s say we have
a list N items long. We often call the measured parameter N . For example, a list
of length N .

In contests, problems are often designed with time or memory constraints to make
you think of a more efficient algorithm. You can estimate this based on the
problem’s constraints. It’s often reasonable to assume a computer can perform
around 100 million (100 000 000) operations per second. For example, if the prob-
lem specifies a time limit of 1 second and an input of N as large as 100 000,
then you know that an O(N2) algorithm might be too slow for large N since
100 0002 = 10 000 000 000, or 10 billion operations.

Time complexity

The time taken by a program can be estimated by the number of processor opera-
tions. For example, an addition a+b or a comparison a < b is one operation.

O(1) time means that the number of operations a computer performs does not
increase as N increases (i.e. does not depend on N). For example, say you have a
program containing a list of N items and want to access the item at the i-th index.
Usually, the computer will simply access the corresponding location in memory.
There might be a few calculations to work out which location in memory the entry
i corresponds to, but these will take the same amount of computation regardless of
N . Note that time complexity does not account for constant factors. For example,
if we doubled the number of calculations used to get each item in the list, the time
complexity is still O (1) because it is the same for all list lengths. You can’t get a
better algorithmic complexity than constant time.

O(logN) time suggests the program takes a couple of extra operations every time

27

NZIC 2020 R3 Solutions — Big O complexity 28

N doubles in size.1 For example, finding a number in a sorted list using binary
search might take 3 operations when N = 8, but it will only take one extra
operation if we double N to 16. As far as efficiency goes, this is pretty good, since
N generally has to get very, very large before a computer starts to struggle.

O
(
log2N

)
time. This was found to be a suitable algorithm complexity for solving

the Diversity problem. It is worse than O(logN) for large numbers of digits, but
the maximum number of digits in Diversity is only 10 so this is fine. For very very
large numbers, as in Diversity 2, this does make a difference. If we define K to be
K = log10N (the number of digits) then this complexity is equivalent to O (K2),
instead of O (K) as required for Diversity 2.

O(N) time means you have an algorithm where the number of operations is directly
proportional to N . For example, a maximum finding algorithm max() will need to
compare against every item in a list of length N to confirm you have indeed found
the maximum. Usually, if you have one loop that iterates N times your algorithm
is O(N).

O (N2) time means the number of operations is proportional to N2 . For example,
suppose you had an algorithm which compared every item in a list against every
other item to find similar items. For a list of N items, each item has to check
against the remaining N − 1 items. In total, N(N − 1) checks are done. This
expands to N2 − N . For Big O, we always take the most significant term as the
dominating factor, which gives O(N2). This is generally not great for large values
of N , which can take a very long time to compute. As a general rule of thumb in
contests, O(N2) algorithms are only useful for input sizes of N . 10 000.

1More formally, it means there exists some constant c for which the program takes at most c
extra operations every time N doubles in size.

c© NZOI 2020

https://train.nzoi.org.nz/problems/1173
https://train.nzoi.org.nz/problems/1205

	Overview
	Mental A
	Nail Polish
	Bytecoin
	Diversity
	Sort Recovery
	Big O complexity

