
New Zealand Informatics Competition 2020
Round 2 Solutions

May 1, 2020



Overview

Questions

1. Mother Hubbard

2. Bear Hunt

3. Imbalance

4. Minceraft

5. Packing Boxes

The solutions to these questions are discussed in detail below. In a few questions
we may refer to the Big O complexity of a solution, e.g. O(N). There is an
explanation of Big O complexity at the end of this document.

Resources

Ever wondered what the error messages mean?

www.nzoi.org.nz/nzic/resources/understanding-judge-feedback.pdf

Read about how the server marking works:

www.nzoi.org.nz/nzic/resources/how-judging-works-python3.pdf

See our list of other useful resources here:

www.nzoi.org.nz/nzic/resources.html

1

https://www.nzoi.org.nz/nzic/resources/understanding-judge-feedback.pdf
https://www.nzoi.org.nz/nzic/resources/how-judging-works-python3.pdf
https://www.nzoi.org.nz/nzic/resources.html


NZIC 2020 R2 Solutions — Overview 2

Tips for next time

Remember, this is a contest. The only thing we care about is that your code runs.
It doesn’t need to be pretty or have comments. There is also no need to worry
about invalid input. Input will always be as described in the problem statement.
For example, the code below is not necessary.

1 # Not needed

2 def error_handling(prompt):

3 while True:

4 try:

5 N = int(input(prompt))

6 if N < 0 or N > 100:

7 print('That was not a valid integer!')

8 else:

9 return N

10 except ValueError:

11 print('Not a valid integer')

12 ...

There are a few other things students can do to improve their performance in
contests.

Practice getting input

A number of students tripped up on processing input with multiple integers on a
single line. A neat trick for processing this sort of input in Python is to use the
str.split() method and the map() function. The split() method will break up
a string at space characters, returning a list of the words. The map() function can
be used to apply int() to each string in this list, converting them to integers. For
example, suppose we have the following line of input:

1 4 2 7

We can turn this into a list of integers with the Python statement

my_ints = list(map(int, input().split()))

Notice that we used list(). This is because map() returns us a special generator
object, not a list. However, generator objects are easily converted to lists.

We suggest having a go at some of the NZIC Practice Problems.

c© NZOI 2020

https://docs.python.org/3/library/stdtypes.html#str.split
https://docs.python.org/3/library/functions.html#map
https://docs.python.org/3/library/stdtypes.html#str.split
https://docs.python.org/3/library/functions.html#map
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#map
https://train.nzoi.org.nz/problem_sets/296


NZIC 2020 R2 Solutions — Overview 3

Move on to the next question

If you are spending too much time on a question, move on. There could be easy
subtasks waiting in the next question. Often, you will think of a solution to
your problem while working on another question. It also helps to come back to a
question with a fresh pair of eyes.

Take time to read the questions

Don’t underestimate the value of taking time to read and understand the question.
You will waste exponentially more time powering off thinking you have the solution
only to discover you missed something obvious.

In the real world, it is very rare to be provided with a problem in a simplistic
form. Part of the challenge with these contests is reading and understanding the
question, then figuring out what algorithm will be needed. Before submitting,
check to make sure you have done everything the question asks you to do.

Test your code first!

It is much more time efficient to test your solutions on your own computer first.
It can take a while to wait for the server to run your code. It is far more efficient
to test it yourself first, submit it, then start reading the next question while you
wait for your previous solution to be marked by the server.

While testing, remember to add some edge case tests. For example, if a question
specifies “1 ≤ N ≤ 10” then try out an input where N = 1. Think of other tricky
inputs that might break your code. Look at the feedback the server is giving
you.

Use a rubber duck

https://en.wikipedia.org/wiki/Rubber_duck_debugging

c© NZOI 2020

https://en.wikipedia.org/wiki/Rubber_duck_debugging


Mother Hubbard

https://train.nzoi.org.nz/problems/1164

Since children dropped off are already represented as negative numbers, we can
simply sum up all of the input numbers to find the difference between the number
of children picked up and dropped off. If this sum is zero, we have ended the day
with all 10 children. Otherwise, the sum must be a negative number, the negation
of which is the number of children left behind.

Python Solution

1 N = int(input())

2 total = 0

3 for _ in range(N):

4 total += int(input())

5

6 if total == 0:

7 print("She's got them all")

8 else:

9 print(-total)

One Line Python Solution

1 print((lambda total: -total if total else "She's got them

all")(sum(int(input()) for _ in range(int(input())))))↪→

C++ Solution

1 #include <iostream>

2 using namespace std;

3

4 int main ()

4

https://train.nzoi.org.nz/problems/1164


NZIC 2020 R2 Solutions — Mother Hubbard 5

5 {

6 int N, total = 0; cin >> N;

7 while (N--) {

8 int d; cin >> d;

9 total += d;

10 }

11 if (total) cout << -total << '\n';

12 else cout << "She's got them all\n";

13 }

c© NZOI 2020



Bear Hunt

https://train.nzoi.org.nz/problems/1165

This problem is similar to the previous question, but the output format is more
involved.

Python Solution

1 N = int(input())

2 total = sum(int(input()) for _ in range(N))

3 h, m = divmod(total, 60)

4 s = "It took"

5 if h:

6 s += f" {h} hours" if h > 1 else " 1 hour"

7 if m:

8 if h:

9 s += " and"

10 s += f" {m} minutes" if m > 1 else " 1 minute"

11 print(s)

Note that h, m = divmod(total, 60) is shorthand for

1 h = total // 60

2 m = total % 60

6

https://train.nzoi.org.nz/problems/1165


Imbalance

https://train.nzoi.org.nz/problems/1166

Subtask 1

Clearly, it is always optimal to move a keyboard from the largest box to the smallest
box at any point in time. In other words, for each minute, we want to remove a
keyboard from the largest box, and then add one to the smallest box.

1 N, T = map(int, input().split())

2 boxes = list(map(int, input().split()))

3 for x in range(T):

4 boxes.append(max(boxes) - 1) # remove a keyboard from largest box

5 boxes.remove(max(boxes))

6 boxes.append(min(boxes) + 1) # add a keyboard to the smallest box

7 boxes.remove(min(boxes))

8 print(max(boxes) - min(boxes))

However, there is an edge case that caught many students out – if all boxes contain
the same number of keyboards, the imbalance is zero and cannot be reduced any
further, but some solutions might continue trying to move keyboards between
boxes sub-optimally. For example, take a look at the following code:

1 N, T = map(int, input().split())

2 boxes = list(map(int, input().split()))

3 for x in range(T):

4 boxes.sort()

5 boxes[-1] -= 1 # remove a keyboard from the largest box

6 boxes[0] += 1 # add a keyboard to the smallest box

7 print(max(boxes) - min(boxes))

At a glance, this solution may appear to be equivalent to the first one. However,
it can fail if, at the very last minute, all of the boxes contain the same number of

7

https://train.nzoi.org.nz/problems/1166


NZIC 2020 R2 Solutions — Imbalance 8

keyboards, since it will always pick two different boxes (when N > 1), causing the
imbalance to increase. To fix this, we could sort the list again after adding each
keyboard, or check that all boxes do not contain the same number of keyboards
before attempting to move a keyboard.

Finding the minimum or maximum box takes O(N) time, or O(N logN) time if
we sort the list. Since we repeat this T times, the overall time complexity is either
O(TN) or O(TN logN).

Subtask 2

When T ≤ 100 000, it is too slow to perform an O(N) search every time we want
to find the minimum or maximum box. A useful observation here is that the order
in which we add or remove keyboards from boxes does not matter – it can be easier
to first add T keyboards to the smallest boxes, and then remove T keyboards from
the largest boxes.

If we sort the boxes, we can then use a nested loop to add T keyboards to the
smallest boxes. If we are careful to ensure that the list of boxes always remains
sorted, it becomes much easier to find the smallest box at any point in time. We
then use a similar process to remove T keyboards from the largest boxes. The tine
complexity of this solution is O(N + T )

1 N, T = map(int, input().split())

2 boxes = list(map(int, input().split()))

3

4 boxes.sort()

5 time = T

6 while time > 0:

7 for i in range(N):

8 # to keep the list sorted, we restart if we reach a

9 # box that is not smaller than the previous box

10 if time == 0 or (i > 0 and boxes[i-1] <= boxes[i]):

11 break

12 boxes[i] += 1

13 time -= 1

14

15 boxes.sort(reverse=True)

16 time = T

17 while time > 0:

18 for i in range(N):

19 if time == 0 or (i > 0 and boxes[i-1] >= boxes[i]):

20 break

c© NZOI 2020



NZIC 2020 R2 Solutions — Imbalance 9

21 boxes[i] -= 1

22 time -= 1

23

24 print(max(boxes) - min(boxes))

There are also other solutions that use various data structures. In Python, we
can use priority queues (heaps), which allow us to both add elements and find
(and remove) the smallest element in O(logN) time. When we want to find the
largest element, we can simply invert all the values to become negative. In C++,
we can use a multiset instead. The time complexity of these solutions are roughly
O(T logN).

Python

1 import heapq

2

3 N, T = map(int, input().split())

4 boxes = list(map(int, input().split()))

5

6 heapq.heapify(boxes)

7 for x in range(T):

8 min_box = heapq.heappop(boxes)

9 heapq.heappush(boxes, min_box + 1)

10

11 boxes = [-x for x in boxes] # make all elements negative

12 heapq.heapify(boxes) # now we can get the max box easily

13

14 for x in range(T):

15 max_box = heapq.heappop(boxes)

16 heapq.heappush(boxes, max_box + 1)

17

18 boxes = [-x for x in boxes] # make positive again

19 print(max(boxes) - min(boxes))

C++

1 #include <bits/stdc++.h>

2 using namespace std;

3

4 int n,t,x;

5

6 int main() {

7 cin >> n >> t;

c© NZOI 2020



NZIC 2020 R2 Solutions — Imbalance 10

8 multiset<int> s;

9 for (int i = 0; i < n; i++) {

10 cin >> x;

11 s.insert(x);

12 }

13 while (t--) {

14 int high = *--s.end();

15 s.erase(--s.end());

16 s.insert(high-1);

17 int low = *s.begin();

18 s.erase(s.begin());

19 s.insert(low+1);

20 }

21 cout << *s.rbegin() - *s.begin() << '\n';

22 }

Subtask 3

When T can be at most 1 billion, it is too slow to individually move keyboards
between boxes T times, even if each move can be done in constant time. While
there are a few different approaches we could take to solve the full problem, the
simplest method uses an observation that the number of keyboards inside each
box is limited to 100 000. If we store counts of how many of each box size we
have, then adding T keyboards to the smallest boxes can be done in a single
loop which iterates over these counts. The time complexity of this solution is
O(N + max(xi))

1 N, T = map(int, input().split())

2 boxes = list(map(int, input().split()))

3 counts = [0]*100010

4 for x in boxes:

5 counts[x] += 1

6

7 time = T

8 for idx in range(1, 100000):

9 delta = min(counts[idx], time)

10 counts[idx+1] += delta

11 counts[idx] -= delta

12 time -= delta

13

14 time = T - time # we might not have used all of our time

15 for idx in range(100000, 1, -1):

c© NZOI 2020



NZIC 2020 R2 Solutions — Imbalance 11

16 delta = min(counts[idx], time)

17 counts[idx-1] += delta

18 counts[idx] -= delta

19 time -= delta

20

21 # find the largest and smallest box sizes where count > 0

22 largest = max(idx for idx, count in enumerate(counts) if count > 0)

23 smallest = min(idx for idx, count in enumerate(counts) if count > 0)

24 print(largest - smallest)

c© NZOI 2020



Minceraft

https://train.nzoi.org.nz/problems/1167

Subtask 1

In this subtask we only have one type of mince which means every item requires
some amount of this initial type. As each raft only depends on either previous rafts
or the initial mince type we can compute how much mince each raft requires.

1 vector<int> costs(r_rafts, 0);

2 for (int r = 0; r < r_rafts; ++r) {

3 int c_count; cin >> c_count;

4 for (int i = 0; i < c_count; ++i) {

5 int type, amount;

6 cin >> type >> amount;

7 --type;

8

9 if (type >= m_minces)

10 amount *= costs[type - m_minces];

11

12 costs[r] += amount;

13 if (costs[r] >= MAX)

14 costs[r] = MAX;

15 }

16 }

Note that the total mince required for a raft may exceed the size of a 32 bit integer
which means the costs may overflow. Because the maximum amount of mince is 109

we can check to see if we exceed this value and if so, mark it as too big. However,
we did not include test cases that included an overflow in the computation of the
final answer so this was not penalised.

Finally, we just need to divide the amount of mince we have by the cost of the last

12

https://train.nzoi.org.nz/problems/1167


NZIC 2020 R2 Solutions — Minceraft 13

raft.

1 int amount = mince_amount / costs.back();

2 cout << amount << '\n';

Subtask 2

Here each raft can require multiple types of initial minces. We can use the same
approach as Subtask 1 except we store the amounts required for every initial mince
type instead of just one mince type.

1 vector<vector<int>> costs(r_rafts, vector<int>(m_minces, 0));

We also need to change the body of the nested loop to add on all the required
mince amounts from the rafts that are used.

1 if (type < m_minces) {

2 costs[r][type] += amount;

3 if (costs[r][type] >= MAX)

4 costs[r][type] = MAX;

5 } else {

6 type -= m_minces;

7 for (int k = 0; k < m_minces; ++k) {

8 i64 addend = (i64) costs[type][k] * amount;

9 if (costs[r][k] + addend < MAX)

10 costs[r][k] += addend;

11 else costs[r][k] = MAX;

12 }

13 }

To calculate the final amount we need to find the minimum quotient of dividing
an initial mince amount by the raft cost for that type. In other words, we find the
mince type that bottlenecks the final amount the most.

1 int total = INT_MAX;

2 for (int i = 0; i < n_minces; ++i) {

3 if (costs.back()[i] == 0) continue;

4 total = min(total, initial[i] / costs.back()[i]);

5 }

6 cout << total << '\n';

Note that it is possible the last raft does not use one of the initial mince types
and so that amount will be zero. We need to skip the type if it is zero otherwise
it will result in an undefined division.

c© NZOI 2020



NZIC 2020 R2 Solutions — Minceraft 14

Time Complexity

For the first subtask we iterate once for every mince type in each raft. This means
our algorithm runs in O(R×Cmax) time where Cmax denotes the maximum amount
of mince types per raft (in this problem, five).

In the second subtask we may need to add on all the mince amounts from a
previous raft for a mince type. This brings our complexity to O(M × R × Cmax)
as we need to iterate for each mince type in the raft.

Memory Complexity

For the first subtask we need to store an array of integers where each integer
represents the amount of mince required for a raft. Hence, the memory complexity
is O(R). The second subtask is similar except we store all the mince types and
amounts for each raft and so the complexity becomes O(M × R). In a highly
optimised implementation this is roughly half a megabyte.

c© NZOI 2020



Packing Boxes

https://train.nzoi.org.nz/problems/1132

Subtask 1

For the first subtask, we can simulate putting boxes into the car, keeping track of
how much space we have used in each row using a list of integers.

For each of the N boxes, we must search through up to N rows to find which
row the next box is pushed to. Thus, the time complexity of this solution is
O(N2)

Python Solution

1 N, K = map(int, input().split())

2 width = [0] # total width of boxes in each row

3

4 for i in range(N):

5 w = int(input()) # get the next box width

6

7 # add a new row if necessary

8 if w + width[-1] > K:

9 width.append(0)

10

11 # push the box back until the gap is too small

12 row = len(width) - 1

13 while row > 0 and w <= K - width[row-1]:

14 row -= 1

15 width[row] += w

16

17 print(len(width))

15

https://train.nzoi.org.nz/problems/1132


NZIC 2020 R2 Solutions — Packing Boxes 16

Subtask 2

For larger values of N , our subtask 1 solution is too slow. Every time a new box is
placed in the car, we have to check a large number of rows to see how far back we
can push the box. However, we can speed up the gap finding process by keeping
track of the furthest row we can push boxes to, for each possible box width. Since
K ≤ 10, there are only up to 10 possible widths to keep track of.

Now instead of searching through up to N rows for each box, we can lookup the
next row for any box width in constant time. Then, for each of the N boxes, we
must update at most K values of this lookup table, so the time complexity of this
solution is O(NK).

Python Solution

1 N, K = map(int, input().split())

2

3 next_row = [0] * (K+1) # lookup table for K possible widths

4 width = [0] * N # we require at most N rows

5 sol = 0

6

7 for i in range(N):

8 w = int(input())

9

10 row = next_row[w] # get the next row from the lookup table

11 width[row] += w # add the box to this row

12 sol = max(sol, row+1) # keep track of the answer (total rows used)

13

14 # If this row has `gap` space left, then all boxes of width `gap+1`

15 # or greater cannot be pushed past the current row. Thus, we update

16 # the next row for these widths to be at least `row+1`.

17 gap = K - width[row]

18 for i in range(gap+1, K+1):

19 next_row[i] = max(next_row[i], row+1)

20

21 print(sol)

Subtask 3

For larger values of K, updating our lookup table starts taking too much time.
Notice that our lookup table always contains several ranges of widths, where the

c© NZOI 2020



NZIC 2020 R2 Solutions — Packing Boxes 17

next row for each width in the range is the same. Instead of keeping track of the
next row for each width individually, we can store these ranges as an ordered map
(keyed by the start of each range), allowing it to be updated much faster. In C++,
std::map can be used. In Java, the equivalent is TreeMap. Unfortunately, Python
does not offer a built-in structure with similar lookup characteristics.

We will insert at most N ranges into our map, each of which takes O(logN) time,
so the time complexity of this solution is O(N logN). For the more experienced
students, note that this problem can also be solved using a segment tree.

C++ Solution

1 #include <bits/stdc++.h>

2 using namespace std;

3

4 int N,K,w,sol;

5 int width[250010];

6 map<int,int> next_row;

7

8 int get_next_row(int x) {

9 // find the largest key not larger than x

10 return (--next_row.upper_bound(x))->second;

11 }

12

13 int main() {

14 cin >> N >> K;

15 next_row[1] = 0;

16 while(N--) {

17 cin >> w;

18 int row = get_next_row(w);

19 width[row] += w;

20 sol = max(sol, row+1);

21 int gap = K - width[row];

22 if(get_next_row(gap+1) < row+1) {

23 next_row[gap+1] = row+1; // add a new range into the map

24 auto it = next_row.upper_bound(gap+1);

25 while(it != next_row.end() && it->second <= row+1) {

26 it = next_row.erase(it); // delete outdated ranges

27 }

28 }

29 }

30 cout << sol << '\n';

31 }

c© NZOI 2020



Big O complexity

Computer scientists like to compare programs using something called Big O nota-
tion. This works by choosing a parameter, usually one of the inputs, and seeing
what happens as this parameter increases in value. For example, let’s say we have
a list N items long. We often call the measured parameter N . For example, a list
of length N .

In contests, problems are often designed with time or memory constraints to make
you think of a more efficient algorithm. You can estimate this based on the prob-
lem’s constraints. It’s often reasonable to assume a computer can perform around
100 million (100 000 000) operations per second. For example, if the problem spec-
ifies a time limit of 1 second and an input of N as large as 100 000, then you know
that an O(N2) algorithm will be too slow since 100 0002 = 10 000 000 000, or 10
billion operations.

Time complexity

The time taken by a program can be estimated by the number of processor opera-
tions. For example, an addition a+b or a comparison a < b is one operation.

O(1) time means that the number of operations it performs does not increase as
N increases (i.e. does not depend on N). For example, say you have a program
containing a list of N items and want to access the item at the i-th index. This
will take the same amount of computation regardless of N . You can’t get much
better efficiency than that.

O(logN) time suggests the program takes a couple of extra operations every time
N doubles in size.1 For example, finding a number in a sorted list using binary
search might take 3 operations when N = 8, but it will only take one extra

1More formally, it means there exists some constant c for which the program takes at most c
extra operations every time N doubles in size.

18



NZIC 2020 R2 Solutions — Big O complexity 19

operation if we double N to 16. As far as efficiency goes, this is pretty good, since
N generally has to get very, very large before a computer starts to struggle.

O(N) time means you have an algorithm where the number of operations is directly
proportional to N . For example, a maximum finding algorithm max() will need to
compare against every item in a list of length N to confirm you have indeed found
the maximum. Usually, if you have one loop that iterates N times your algorithm
is O(N).

O(N2) time means the number of operations is proportional to N2 . For example,
suppose you had an algorithm which compared every item in a list against every
other item to find similar items. For a list of N items, each item has to check
against the remaining N − 1 items. In total, N(N − 1) checks are done. This
expands to N2 − N . For Big O, we always take the most significant term as
the dominating factor, which gives O(N2). This is generally not great for large
values of N , which can take a very long time to compute. As a general rule
of thumb, in contests, O(N2) algorithms are only useful for input sizes of up to
N ≤ 10 000.

c© NZOI 2020


	Overview
	Mother Hubbard
	Bear Hunt
	Imbalance
	Minceraft
	Packing Boxes
	Big O complexity

