
New Zealand Informatics Competition 2020
Round 1 Solutions

March 3, 2020

Overview

Questions

1. Rimuru’s Road

2. Paddocks

3. Lineup

4. Lake Waikaremoana

5. Blast Off

The solutions to these questions are discussed in detail below. In a few questions
we may refer to the Big O complexity of a solution, e.g. O(N). There is an
explanation of Big O complexity at the end of this document.

Resources

Ever wondered what the error messages mean?

www.nzoi.org.nz/nzic/resources/understanding-judge-feedback.pdf

Read about how the server marking works:

www.nzoi.org.nz/nzic/resources/how-judging-works-python3.pdf

See our list of other useful resources here:

www.nzoi.org.nz/nzic/resources.html

1

https://www.nzoi.org.nz/nzic/resources/understanding-judge-feedback.pdf
https://www.nzoi.org.nz/nzic/resources/how-judging-works-python3.pdf
https://www.nzoi.org.nz/nzic/resources.html

NZIC 2020 R1 Solutions — Overview 2

Tips for next time

Remember, this is a contest. The only thing we care about is that your code runs.
It doesn’t need to be pretty or have comments. There is also no need to worry
about invalid input. Input will always be as described in the problem statement.
For example, the code below is not necessary.

1 # Not needed

2 def error_handling(prompt):

3 while True:

4 try:

5 N = int(input(prompt))

6 if N < 0 or N > 100:

7 print('That was not a valid integer!')

8 else:

9 return N

10 except ValueError:

11 print('Not a valid integer')

12 ...

There are a few other things students can do to improve their performance in
contests.

Practice getting input

A number of students tripped up on processing input with multiple integers on a
single line. A neat trick for processing this sort of input in Python is to use the
str.split() method and the map() function. The split() method will break up
a string at space characters, returning a list of the words. The map() function can
be used to apply int() to each string in this list, converting them to integers. For
example, suppose we have the following line of input:

1 4 2 7

We can turn this into a list of integers with the Python statement

my_ints = list(map(int, input().split()))

Notice that we used list(). This is because map() returns us a special generator
object, not a list. However, generator objects are easily converted to lists.

We suggest having a go at some of the NZIC Practice Problems.

c© NZOI 2020

https://docs.python.org/3/library/stdtypes.html#str.split
https://docs.python.org/3/library/functions.html#map
https://docs.python.org/3/library/stdtypes.html#str.split
https://docs.python.org/3/library/functions.html#map
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#map
https://train.nzoi.org.nz/problem_sets/296

NZIC 2020 R1 Solutions — Overview 3

Move on to the next question

If you are spending too much time on a question, move on. There could be easy
subtasks waiting in the next question. Often, you will think of a solution to
your problem while working on another question. It also helps to come back to a
question with a fresh pair of eyes.

Take time to read the questions

Don’t underestimate the value of taking time to read and understand the question.
You will waste exponentially more time powering off thinking you have the solution
only to discover you missed something obvious.

In the real world, it is very rare to be provided with a problem in a simplistic
form. Part of the challenge with these contests is reading and understanding the
question, then figuring out what algorithm will be needed. Before submitting,
check to make sure you have done everything the question asks you to do.

Test your code first!

It is much more time efficient to test your solutions on your own computer first.
It can take a while to wait for the server to run your code. It is far more efficient
to test it yourself first, submit it, then start reading the next question while you
wait for your previous solution to be marked by the server.

While testing, remember to add some edge case tests. For example, if a question
specifies “1 ≤ N ≤ 10” then try out an input where N = 1. Think of other tricky
inputs that might break your code. Look at the feedback the server is giving
you.

Use a rubber duck

https://en.wikipedia.org/wiki/Rubber_duck_debugging

c© NZOI 2020

https://en.wikipedia.org/wiki/Rubber_duck_debugging

Rimuru’s Road

https://train.nzoi.org.nz/problems/1113

For each type of facility, we only need to consider the two closest facilities, which
are the previous and next facilities from the current location. Suppose that we
are currently at location D, and we are considering a facility that occurs every
K kilometres. We could use integer division to find the location of the previous
facility then add K to find the next location. Repeat this step for each facility
and record the smallest difference between these facility locations and our current
location.

1 # see the 'Practice getting input' section above to understand 'map'

2 facilities = list(map(int, input().split()))

3 location = int(input())

4 distances = []

5

6 for x in facilities:

7 prev_facility = location // x * x # the // is integer divison

8 next_facility = prev_facility + x

9 distance = min(location - prev_facility, next_facility - location)

10 distances.append(distance)

11

12 min_distance = min(distances)

13 print(min_distance)

14

15 # determine if there is more than one facility at the same distance

16 dist_count = 0

17 for d in distances:

18 if d == min_distance:

19 dist_count += 1

20

21 if dist_count > 1:

22 print("can't make up my mind")

4

https://train.nzoi.org.nz/problems/1113

NZIC 2020 R1 Solutions — Rimuru’s Road 5

Alternatively, we can use the modulo operator (%) to calculate the distance to
the previous facility as D % K. Then the next facility must be at location
D − (D % K) + K, which is at a distance of K − (D % K) from the current
location.

Python

1 facilities = map(int, input().split())

2 location = int(input())

3

4 dists = sorted(min(location % x, x - location % x) for x in facilities)

5

6 print(dists[0])

7 if dists[0] == dists[1]:

8 print("can't make up my mind")

C++

1 #include <bits/stdc++.h>

2 using namespace std;

3

4 int main() {

5 int location;

6 int min_distances[3];

7 for (int i = 0; i < 3; ++i) {

8 cin >> min_distances[i];

9 }

10 cin >> location;

11 for (int i = 0; i < 3; ++i) {

12 int remainder = location % min_distances[i];

13 min_distances[i] = min(remainder, min_distances[i] - remainder);

14 }

15 sort(min_distances, min_distances + 3);

16

17 cout << min_distances[0] << '\n';

18 if (min_distances[0] == min_distances[1])

19 cout << "can't make up my mind\n";

20 }

c© NZOI 2020

https://en.wikipedia.org/wiki/Modulo_operation

Paddocks

https://train.nzoi.org.nz/problems/1120

Subtask 1

There are lots of details in this problem which make it easy to miss something. A
good approach is to break it down into steps and tackle them one at a time. For
the first subtask, we only need to determine if the farm is healthy or unhealthy. A
farm is unhealthy if and only if the average for each of the three years is at least
12%.

1. We calculate the average as the sum of the saturation values divided by the
number of saturation values for that year.

2. Do this for all three years.

3. If any year has an average saturation of less than 12%, then output healthy,
otherwise output unhealthy.

A partial solution might look like this...

1 unhealthy = True

2 for year in range(3):

3 N = int(input()) # The number of saturation values

4 total = sum(map(int, input().split()))

5

6 if total < N * 12:

7 unhealthy = False

8

9 if unhealthy:

10 print("unhealthy")

11 else:

12 print("healthy")

6

https://train.nzoi.org.nz/problems/1120

NZIC 2020 R1 Solutions — Paddocks 7

On line 6 we use total < N * 12, which is logically equivalent to total / N < 12.
We have moved N to the right-hand side of the inequality to avoid a floating-point
division and comparison. While it isn’t strictly necessary in this particular case,
it is usually a good idea to avoid using floating-point numbers if possible – not
all numbers can be represented exactly in a float, and this can give unexpected
results.1 Note that integer division would also be acceptable here.

Subtask 2

Now that we know if the land is healthy or unhealthy, we can modify the code to
check if the farmer should resow or not. For the first year only, we check if at least
half of saturation values are at least 25%.

Python Solution

1 unhealthy = True

2 resow = False

3 for year in range(3):

4 N = int(input()) # The number of saturation values

5 saturations = list(map(int, input().split()))

6

7 # If the average saturation is below 12 for any year,

8 # the farm is healthy.

9 if sum(saturations) < N * 12:

10 unhealthy = False

11

12 if year == 0: # for the first year only

13 # resow if at least half of the saturations are at least 25%

14 resow_count = sum(x >= 25 for x in saturations)

15 if resow_count * 2 >= N:

16 resow = True

17 # (resow_count * 2 >= N) is equivalent to (resow_count >= N / 2)

18

19 if unhealthy and resow:

20 print("resow")

21 elif unhealthy:

22 print("unhealthy")

23 else:

24 print("healthy")

1https://floating-point-gui.de/errors/comparison/

c© NZOI 2020

https://floating-point-gui.de/errors/comparison/

NZIC 2020 R1 Solutions — Paddocks 8

Note that resow_count = sum(x >= 25 for x in saturations) uses a list compre-
hension. This is equivalent to saying

1 resow_list = []

2 for x in saturations:

3 resow_list.append(x >= 25)

4 resow_count = sum(resow_list)

And yes, it is legal to sum the result of a True/False condition. If the condition
is True it will be evaluated as 1 otherwise it will count as 0.

C++ Solution

1 #include <bits/stdc++.h>

2 using namespace std;

3

4 int main() {

5 bool unhealthy = true;

6 bool resow = false;

7 int N, saturation;

8

9 for (int year = 0; year < 3; year++) {

10 cin >> N;

11 int total = 0; // total saturation

12 int resow_count = 0; // number of saturation values >= 25

13

14 for (int i = 0; i < N; i++) {

15 cin >> saturation;

16 total += saturation;

17 if (saturation >= 25) resow_count++;

18 }

19

20 if (year == 0 && resow_count * 2 >= N) resow = true;

21 // (resow_count*2 >= N) is equivalent to (resow_count >= N/2)

22

23 if (total < N * 12) unhealthy = false;

24 // (total < N*12) is equivalent to (total/N < 12)

25 }

26

27 if (unhealthy && resow) cout << "resow\n";

28 else if (unhealthy) cout << "unhealthy\n";

29 else cout << "healthy\n";

30 }

c© NZOI 2020

https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions

Lineup

https://train.nzoi.org.nz/problems/1144

Subtask 1

There are a few different strategies we can use. Here’s one: for each player x in
the rivalling team, we try to match x against the weakest unmatched player that
can beat x from Toddy’s team.

Our first implementation of this strategy finds the matching player by iterating
over all N players in Toddy’s team (for each of the N players in the rivalling team),
which runs in O(N2) time.

1 n = int(input())

2 toddys_team = list(map(int, input().split()))

3 rivalling_team = list(map(int, input().split()))

4 wins = 0

5 for x in rivalling_team: # for each player x in the rivalling team

6 # find the weakest player that can beat player x

7 best = 1000000

8 for y in toddys_team:

9 if y > x:

10 best = min(best, y)

11 if best != -1:

12 toddys_team.remove(best)

13 wins += 1

14 print(wins)

Subtask 2

Notice that the actual order of the matches is not important – we can sort the
players in each team by skill level without affecting the result.

9

https://train.nzoi.org.nz/problems/1144

NZIC 2020 R1 Solutions — Lineup 10

Now consider what would happen if we ran our subtask 1 solution with sorted
teams. If we iterate over each player from the rivalling team in ascending order of
skill level, then the optimal matching player from Toddy’s team will also always
be in ascending order of skill level. Therefore, we actually only need to iterate
over Toddy’s team once – for each player y in Toddy’s team (in ascending order),
we try to match y against the weakest unmatched player from the rivalling team.
The time complexity of this solution is O(N).

Python Solution

1 n = int(input())

2 toddys_team = sorted(map(int, input().split()))

3 rivalling_team = sorted(map(int, input().split()))

4 wins = 0

5 for y in toddys_team:

6 if y > rivalling_team[wins]:

7 wins += 1

8 print(wins)

C++ Solution

1 #include <bits/stdc++.h>

2 using namespace std;

3

4 int n, wins;

5 int a[100010];

6 int b[100010];

7

8 int main() {

9 cin >> n;

10 for (int i = 0; i < n; i++) cin >> a[i];

11 for (int i = 0; i < n; i++) cin >> b[i];

12 sort(a, a+n);

13 sort(b, b+n);

14 for (int i = 0; i < n; i++) {

15 if(a[i] > b[wins]) wins++;

16 }

17 cout << wins << '\n';

18 }

c© NZOI 2020

Lake Waikaremoana

https://train.nzoi.org.nz/problems/1125

Subtask 1

We need to calculate the overall difficulty when starting from the first hut and going
clockwise. Let’s switch to 0-based indexing for the trails, and let ratings[i] be
the difficulty rating of trail i.

• During the first day we’ll take trail 0 with N units of food.
Actual difficulty: ratings[0]×N .

• During the second day we’ll take trail 1 with N − 1 units of food.
Actual difficulty: ratings[1]× (N − 1).

• During the i-th day (0-based) we’ll take trail i with N − i units of food.
Actual difficulty: ratings[i]× (N − i).

These actual difficulties can be calculated and added up using a for-loop to get
the overall difficulty.

1 def calc_score_clockwise_from_first_hut(n, ratings):

2 # calculates the overall difficulty when starting from the first

3 # hut and going clockwise

4 answer = 0

5 for i in range(n):

6 # i is the current day, starting from 0

7 # (n-i) is the amount of food carried

8 answer += ratings[i] * (n-i)

9 return answer

10

11 n = int(input())

12 ratings = list(map(int, input().split()))

13 print(calc_score_clockwise_from_first_hut(n, ratings))

11

https://train.nzoi.org.nz/problems/1125

NZIC 2020 R1 Solutions — Lake Waikaremoana 12

Subtask 2

We need to calculate the overall difficulty when starting from each hut going
clockwise and pick the minimum. Calculating the overall difficulty when starting
from hut S (0-based) is similar to subtask 1, except that during the i-th day we
take trail (S+ i)%N . The modulo operator is used to wrap around to trail 0 after
trail N − 1.

1 import math

2

3 def calc_score_clockwise(n, ratings, start):

4 # calculates the overall difficulty when starting from the given

5 # hut and going clockwise

6 answer = 0

7 for i in range(n):

8 # i is the current day, starting from 0

9 # (start+i) % n is the trail taken (0-based, with wrap-around)

10 # (n-i) is the amount of food carried

11 answer += ratings[(start+i)%n] * (n-i)

12 return answer

13

14 def solve_clockwise(n, ratings):

15 # calculates the minimum overall difficulty when starting from any

16 # hut and going clockwise

17 answer = math.inf

18 for start in range(n):

19 current = calc_score_clockwise(n, ratings, start)

20 answer = min(answer, current)

21 return answer

Subtask 3

In this subtask we also need to consider walking in the anticlockwise direction.

One approach is to copy the function solve_clockwise and change the trail calcu-
lation to (S− i) %N to walk anticlockwise. (This formula works in languages like
Python that use floored division, but in languages like C++ that use truncated
division it needs to be changed to (S− i+N)%N to avoid negative results.)

Another approach is run solve_clockwise once normally, then reverse the difficulty
ratings and run it a second time to consider walking anticlockwise.

c© NZOI 2020

NZIC 2020 R1 Solutions — Lake Waikaremoana 13

Subtask 4

The time complexity of the previous algorithm is O(N2), because there are N
starting huts to consider and for each one calculating the overall difficulty is O(N).
This is too slow when N is 100 000.

It turns out that the overall difficulty when starting from a particular hut can be
computed efficiently based on the overall difficulty when starting from the previous
hut.

Suppose N = 4 and the difficulty ratings of the trails are a, b, c, d. When starting
from the first hut, the overall difficulty is 4a + 3b + 2c + d. When starting from
the second hut, the overall difficulty is 4b+ 3c+ 2d+ a, which can be reordered as
a + 4b + 3c + 2d.

The expressions for the two starting huts are related: the coefficients have all gone
up by one (e.g. 3b ⇒ 4b), except for a which changed from 4a to a. So the
difference is b+ c+d− 3a, which can be rewritten as (a+ b+ c+d)− 4a. This can
be computed efficiently, since the first term is the sum of all the difficulty ratings
and can be precomputed.

So if we know the overall difficulty when starting from hut i − 1, we can add
sum ratings−N × ratings[i-1] to get the overall difficulty when starting from
hut i.

1 def calc_score_clockwise_from_first_hut(n, ratings):

2 answer = 0

3 for i in range(n):

4 answer += ratings[i] * (n-i)

5 return answer

6

7 def solve_clockwise(n, ratings):

8 sum_ratings = sum(ratings)

9 current = calc_score_clockwise_from_first_hut(n, ratings)

10 answer = current

11 for i in range(1, n):

12 current = current + sum_ratings - ratings[i-1]*n

13 answer = min(answer, current)

14 return answer

15

16 def solve(n, ratings):

17 answer_clockwise = solve_clockwise(n, ratings);

18 answer_anticlockwise = solve_clockwise(n, list(reversed(ratings)))

19 return min(answer_clockwise, answer_anticlockwise)

c© NZOI 2020

Blast Off

https://train.nzoi.org.nz/problems/1133

Subtask 1

This subtask is equivalent to finding the optimal (possibly negative) coefficients a
and b, such that af1+bf2 = s1. The proof is left as an exercise for the reader.

Since there are only T tiles, we know that the optimal strategy uses at most T
rockets (otherwise it would visit some tiles twice, which is never optimal). There-
fore, we can try all possible values of a from −T to T . For each possible value of
a, we determine if there exists a corresponding b which satisfies the equation. If
so, we calculate the cost of this strategy as |a|c1 + |b|c2.

1 import math

2

3 R, N, T = map(int, input().split())

4 c1, f1 = map(int, input().split())

5 c2, f2 = map(int, input().split())

6 start = int(input())

7 sol = math.inf

8 for a in range(-T, T+1):

9 if (start + a*f1) % f2 == 0:

10 b = (start + a*f1) // f2

11 sol = min(sol, abs(a)*c1 + abs(b)*c2)

12 print(sol)

14

https://train.nzoi.org.nz/problems/1133

NZIC 2020 R1 Solutions — Blast Off 15

Subtask 2

We can visualise the board as a graph, where each tile is a node, and we have R
directed edges for each tile, going from tile x to |x− fi|. For this subtask, ci = 1
for all i, so this is an unweighted graph (all edges are of unit length). Therefore,
this subtask can be solved using BFS,2 where the source node is the starting tile
(si) and the destination is tile 0. Note that we do not have to explicitly construct
an adjacency list – we can simply iterate over the R rockets to get the adjacent
nodes. The time complexity of BFS is O(V +E) where V is the number of vertices
(nodes) and E is the number of edges, so in this case it is O(T + RT) = O(RT).
Since there are N different starting positions, the overall time complexity of this
solution is O(NRT).

1 import collections

2

3 R, N, T = map(int, input().split())

4 jumps = []

5 for i in range(R):

6 c, f = map(int, input().split())

7 jumps.append((c,f))

8

9 for i in range(N):

10 x = int(input())

11 cost = [-1]*10010

12 q = collections.deque()

13 q.append(x)

14 cost[x] = 0

15 while len(q) > 0:

16 cur_dist = q.popleft()

17 for c,f in jumps:

18 next_dist = abs(cur_dist - f)

19 if cost[next_dist] == -1:

20 cost[next_dist] = cost[cur_dist] + 1

21 q.append(next_dist)

22 print(cost[0])

2See the NZIC 2019 Round 3 solutions for an explanation of BFS.

c© NZOI 2020

http://www.nzoi.org.nz/nzic/past/2019/NZIC_2019_R3_Solutions.pdf#chapter.5

NZIC 2020 R1 Solutions — Blast Off 16

Subtask 3

Performing a BFS from each player’s starting tile is too slow. Instead, we can
reverse the edges of our graph and perform a single BFS starting from the goal,
tile 0. Note that if we do not explicitly construct an adjacency list (and reverse
the edges), we will need to check for two possible edges per rocket for each tile
– one going “forwards”, from x to x + fi, and one going “backwards”, from x to
|x− fi|. The time complexity of this solution is O(RT).

1 import collections

2

3 R, N, T = map(int, input().split())

4 jumps = []

5 for i in range(R):

6 c, f = map(int, input().split())

7 jumps.append((c,f))

8

9 cost = [-1]*10010

10 q = collections.deque()

11 q.append(0)

12 cost[0] = 0

13 while len(q) > 0:

14 cur_dist = q.popleft()

15 for c,f in jumps:

16 next_dist = cur_dist + f

17 if next_dist < T and cost[next_dist] == -1:

18 cost[next_dist] = cost[cur_dist] + 1

19 q.append(next_dist)

20 next_dist = f - cur_dist

21 if next_dist > 0 and cost[next_dist] == -1:

22 cost[next_dist] = cost[cur_dist] + 1

23 q.append(next_dist)

24 for i in range(N):

25 dist = int(input())

26 print(cost[dist])

c© NZOI 2020

NZIC 2020 R1 Solutions — Blast Off 17

Subtask 4

For the full solution, we need to use an algorithm that works on weighted graphs.
Our solution uses Dijkstra’s algorithm. It works very similarly to BFS – the main
difference is that instead of a queue, we use a priority queue (heap), so that we
always process nodes with the lowest total cost first.

Python Solution

In Python, we recommend using the heapq module. queue.PriorityQueue can also
be used, though it is slightly slower as it’s designed for multi-threaded use.

1 import math

2 import heapq

3

4 R, N, T = map(int, input().split())

5 jumps = []

6 for i in range(R):

7 c, f = map(int, input().split())

8 jumps.append((c,f))

9

10 cost = [math.inf]*10010

11 pq = []

12 heapq.heappush(pq, (0,0))

13 cost[0] = 0

14 while len(pq) > 0:

15 cur_cost, cur_dist = heapq.heappop(pq)

16 if cost[cur_dist] != cur_cost: continue

17 for c,f in jumps:

18 next_dist = cur_dist + f

19 next_cost = cur_cost + c

20 if next_dist < T and cost[next_dist] > next_cost:

21 cost[next_dist] = next_cost

22 heapq.heappush(pq, (next_cost, next_dist))

23 next_dist = f - cur_dist

24 if next_dist > 0 and cost[next_dist] > next_cost:

25 cost[next_dist] = next_cost

26 heapq.heappush(pq, (next_cost, next_dist))

27 for i in range(N):

28 dist = int(input())

29 print(cost[dist])

c© NZOI 2020

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://docs.python.org/3.8/library/heapq.html
https://docs.python.org/3.8/library/queue.html#queue.PriorityQueue

NZIC 2020 R1 Solutions — Blast Off 18

C++ Solution

1 #include <bits/stdc++.h>

2 using namespace std;

3 typedef pair<int,int> ii;

4

5 int r,n,t,x;

6 int c[50];

7 int f[50];

8 int cost[10010];

9

10 int main() {

11 cin >> r >> n >> t;

12 for (int i = 0; i < r; i++) cin >> c[i] >> f[i];

13 for (int i = 0; i < 10010; i++) cost[i] = INT_MAX;

14 priority_queue<ii, vector<ii>, greater<ii>> pq; // min-heap

15 pq.push({0,0});

16 cost[0] = 0;

17 while (!pq.empty()) {

18 int cur_cost = pq.top().first;

19 int cur_dist = pq.top().second;

20 pq.pop();

21 if (cost[cur_dist] != cur_cost) continue;

22 for (int i = 0; i < r; i++) {

23 int next_dist = cur_dist + f[i];

24 int next_cost = cur_cost + c[i];

25 if (next_dist < t && cost[next_dist] > next_cost) {

26 cost[next_dist] = next_cost;

27 pq.push({next_cost, next_dist});

28 }

29 next_dist = f[i] - cur_dist;

30 if (next_dist > 0 && cost[next_dist] > next_cost) {

31 cost[next_dist] = next_cost;

32 pq.push({next_cost, next_dist});

33 }

34 }

35 }

36 for (int i = 0; i < n; i++) {

37 cin >> x;

38 cout << cost[x] << '\n';

39 }

40 }

c© NZOI 2020

Big O complexity

Computer scientists like to compare programs using something called Big O nota-
tion. This works by choosing a parameter, usually one of the inputs, and seeing
what happens as this parameter increases in value. For example, let’s say we have
a list N items long. We often call the measured parameter N . For example, a list
of length N .

In contests, problems are often designed with time or memory constraints to make
you think of a more efficient algorithm. You can estimate this based on the prob-
lem’s constraints. It’s often reasonable to assume a computer can perform around
100 million (100 000 000) operations per second. For example, if the problem spec-
ifies a time limit of 1 second and an input of N as large as 100 000, then you know
that an O(N2) algorithm will be too slow since 100 0002 = 10 000 000 000, or 10
billion operations.

Time complexity

The time taken by a program can be estimated by the number of processor opera-
tions. For example, an addition a+b or a comparison a < b is one operation.

O(1) time means that the number of operations it performs does not increase as
N increases (i.e. does not depend on N). For example, say you have a program
containing a list of N items and want to access the item at the i-th index. This
will take the same amount of computation regardless of N . You can’t get much
better efficiency than that.

O(logN) time suggests the program takes a couple of extra operations every time
N doubles in size.3 For example, finding a number in a sorted list using binary
search might take 3 operations when N = 8, but it will only take one extra

3More formally, it means there exists some constant c for which the program takes at most c
extra operations every time N doubles in size.

19

NZIC 2020 R1 Solutions — Big O complexity 20

operation if we double N to 16. As far as efficiency goes, this is pretty good, since
N generally has to get very, very large before a computer starts to struggle.

O(N) time means you have an algorithm where the number of operations is directly
proportional to N . For example, a maximum finding algorithm max() will need to
compare against every item in a list of length N to confirm you have indeed found
the maximum. Usually, if you have one loop that iterates N times your algorithm
is O(N).

O(N2) time means the number of operations is proportional to N2 . For example,
suppose you had an algorithm which compared every item in a list against every
other item to find similar items. For a list of N items, each item has to check
against the remaining N − 1 items. In total, N(N − 1) checks are done. This
expands to N2 − N . For Big O, we always take the most significant term as
the dominating factor, which gives O(N2). This is generally not great for large
values of N , which can take a very long time to compute. As a general rule
of thumb, in contests, O(N2) algorithms are only useful for input sizes of up to
N ≤ 10 000.

c© NZOI 2020

	Overview
	Rimuru's Road
	Paddocks
	Lineup
	Lake Waikaremoana
	Blast Off
	Big O complexity

