
NZIC Round 2 Solutions 2019

Questions
1. More Tea Please: Multiplication and output
2. Quality Tea: While loop
3. Shadow's Battle: Simulation
4. Totem Pole: Greedy / Simulation / Data Structures
5. An Average Problem: Ad-hoc

The solutions to these questions are discussed in detail below. In a few questions we may
refer to the Big O complexity of a solution. e.g. . There is an explanation of Big O at the(N)O
end of this document.

Resources
Ever wondered what the error messages mean?
http://www.nzoi.org.nz/nzic/resources/understanding-judge-feedback.pdf

Read about how the server marking works:
http://www.nzoi.org.nz/nzic/resources/how-judging-works-python3.pdf

Other resources: http://www.nzoi.org.nz/nzic/resources.html

Tips for next time
Remember, this is a contest. The only thing we care about is that your code runs. It doesn't
need to be pretty or have comments. There is also no need to worry about invalid input.
Input will always be as described in the problem statement. For example, the code below is
not necessary.

Not needed
def error_handling(prompt):
 while True:
 try:
 tea = int(input(prompt))
 if tea < 0 or tea > 100:
 print('That was not a valid integer!')
 else:
 return tea
 except ValueError:
 print('Not a valid integer')
...

There are a few other things students can do to improve their performance in contests.

http://www.nzoi.org.nz/nzic/resources/understanding-judge-feedback.pdf
http://www.nzoi.org.nz/nzic/resources/how-judging-works-python3.pdf
http://www.nzoi.org.nz/nzic/resources.html

Move on to the next question
If you are spending too much time on a question, move on. There could be easy subtasks
waiting in the next question. Often, you will think of a solution to your problem while working
on another question. It also helps to come back to a question with a fresh pair of eyes.

Take time to read the questions
Don't underestimate the value of taking time to read and understand the question. You will
waste exponentially more time powering off thinking you have the solution only to discover
you missed something obvious.

In the real world, it is very rare to be provided with a problem in a simplistic form. Part of the
challenge with these contests is reading and understanding the question, then figuring out
what algorithm will be needed. Before submitting, check to make sure you have done
everything the question asks you to do.

Test your code first!!!
It is much more time efficient to test your solutions on your own computer first. It can take a
while to wait for the server to run your code. It is far more efficient to test it yourself first,
submit it, then start reading the next question while you wait for your previous solution to be
marked by the server.

While testing, remember to add some edge case tests. For example, if a question specifies
"1 < N <= 10" then try out an input where N = 10. Think of other tricky inputs that might break
your code. Look at the feedback the server is giving you.

Use a rubber duck
https://en.wikipedia.org/wiki/Rubber_duck_debugging

https://en.wikipedia.org/wiki/Rubber_duck_debugging

More Tea Please
https://train.nzoi.org.nz/problems/880

There are 24 boxes, each with 10 teabags, so 24 * 10 = 240 tea bags per box.

Python 3 Examples

example 1
print("Ginger", int(input()) * 240)
print("Chamomile", int(input()) * 240)
print("Earl Gray", int(input()) * 240)
print("Peppermint", int(input()) * 240)
print("Lemon", int(input()) * 240)
print("Strawberry", int(input()) * 240)

example 2
teas = ["Ginger", "Chamomile", "Earl Gray",
 "Peppermint", "Lemon", "Strawberry"]

for tea in teas:
 print(tea, int(input()) * 240)

example 3 - one line because why not
print("\n".join(map(" ".join, zip(["Ginger", "Chamomile", "Earl Gray",
"Peppermint", "Lemon", "Strawberry"], [str(int(input()) * 240) for _ in
range(6)]))))

C++ Examples

// example 1
#include <bits/stdc++.h>
using namespace std;

int main() {
 int G, C, E, P, L, S;
 cin >> G >> C >> E >> P >> L >> S;
 cout << "Ginger " << G * 240 << endl;
 cout << "Chamomile " << C * 240 << endl;
 cout << "Earl Gray " << E * 240 << endl;
 cout << "Peppermint " << P * 240 << endl;
 cout << "Lemon " << L * 240 << endl;
 cout << "Strawberry " << S * 240 << endl;

 return 0;
}

https://train.nzoi.org.nz/problems/880

// example 2
#include <iostream>
using namespace std;

string tea[] = {"Ginger", "Chamomile", "Earl Gray",
 "Peppermint", "Lemon", "Strawberry"};

int main() {
 for (int i = 0; i < 6; i++) {
 int x;
 cin >> x;
 cout << tea[i] << " " << x * 240 << '\n';
 }
}

Quality Tea
https://train.nzoi.org.nz/problems/1023

For the first subtask, if all three quality levels are less than K then a fault is detected.
Otherwise, no fault is detected. We can solve this by reading each line in and checking if all
of them are less than K.

40% subtask
N, K = map(int, input().split())

read in quality values
quals = []
for _ in range(3):
 quals.append(int(input()))

check if all qualities less than K
if quals[0] < K and quals[1] < K and quals[2] < K:
 print("Fault Detected")
 print(*quals)
else:
 print("No Fault")

For the full solution, we need to handle more than three products. We must check that the
previous three qualities in a row are less than K. Some competitors lost points because they
forgot to print "No Fault" if the end of the input was reached and no three successive quality
values were less than K.

Python Examples

example 1
N, K = map(int, input().split())

quals = []
for _ in range(N):
 q = int(input())
 if q < K:
 quals.append(q)
 else:
 quals.clear() # makes the list empty again

 if len(quals) == 3:
 print("Fault Detected")
 print(*quals) # this * syntax is called argument unpacking
 break
else:
 print("No Fault")

https://train.nzoi.org.nz/problems/1023

Extra for interest: argument unpacking explained:
https://docs.python.org/3/tutorial/controlflow.html#unpacking-argument-lists

example 2
info = input()
N = int(info[0])
K = int(info[1])
faults = 0
products = []

for i in range(N):
 product = int(input())
 if product < K:
 faults += 1
 products.append(product)
 elif faults < 3:
 faults = 0
 products = []

if faults >= 3:
 print("Fault Detected")
 print("{} {} {}".format(products[0], products[1], products[2]))
else:
 print("No Fault")

C++ Example

// example 1
#include <iostream>
using namespace std;

int main() {
 int n_products, threshold;
 cin >> n_products >> threshold;

 int count = 0;
 int stuff[3];
 for (int i = 0; i < n_products; ++i) {
 int t;
 cin >> t;

 if (t < threshold) {
 stuff[count++] = t;
 } else {
 count = 0;
 }

 if (count == 3) {
 cout << "Fault Detected" << endl;
 cout << stuff[0] << " " << stuff[1] << " " << stuff[2] << endl;

https://docs.python.org/3/tutorial/controlflow.html#unpacking-argument-lists

 return 0;
 }
 }

 cout << "No Fault" << endl;
}

Shadow’s Battle
https://train.nzoi.org.nz/problems/885

Make sure you understand the problem description above before looking at the solution!

To solve this problem we can ‘play out’ or simulate the battle until it ends. To do this, we need to
know the initial values of each variable, and our end criteria. The initial values of our variables -
for instance, Shadow’s health - are stated in the problem description. Shadow begins with 60
health, and the players with 10. Note that you will need to keep track of the players’ health
points separately in an array or list. The end criteria for the game is when either Shadow dies or
all the other players die, because then we can declare our winner.

To implement this, you could use a while loop that checks after each turn if Shadow and the
players are still alive. eg. while shadow_alive and players_alive. Then at the end of
the while loop, we should set shadow_alive and players_alive to True or False,
depending on the health of Shadow and the players.

Within our while loop, we take turns playing for Shadow and the group of players. You can also
keep track of whose turn it is using a boolean variable. Shadow starts first, so initialize this to
True. At the end of each turn, we can set shadows_turn = not shadows_turn to toggle
whose turn it is.

During Shadow’s turn:
Shadow makes an attack on the adjacent player(s) around her. To determine which players
these are, we find the closest player on each side of Shadow. One way to do this is to create
two new variables, left and right, which represent the index of the left player and right
player. To start, we set these indices to the location of shadow. We move these indices
outwards from shadow until we find a player who has a health greater than zero. These players
are the two which receive damage. When one of these players dies, in the next turn we will
continue moving the left or right indices out until we find a new player or reach the end of the
list.

while left > 0 and H[left] <= 0:
 left -= 1
while right < 199 and H[right] <= 0:
 right += 1

A value of 199 is used since this is the maximum index right can be in a list 200 items long. It
must be 200 long since

https://train.nzoi.org.nz/problems/885

During the players turn:
Shadow’s health will decrease by the combined damage of all living players. One way to do this
is to sum up the damage of all living players for each turn. A more computationally efficient way
would be to sum up the total damage before starting the simulation then, when a player dies,
subtract their damage contribution from the total. This saves having to iterate through the list
each time.

After taking either Shadow’s or the players’ turn, we complete death checks as discussed above
and print the required output depending on shadow_alive and players_alive.

Python Example

N = int(input())
H = [0] * 200 # each player's health
D = [0] * 200 # how much damage each player can do
p_dam = 0 # total damage all players can do together

read in players
for _ in range(N):
 pos, dam = map(int, input().split())
 D[pos - 1] = dam # player damage
 H[pos - 1] = 10 # player health
 p_dam += dam # collective player damage

read in shadow
s_pos, s_dam = map(int, input().split())
s_health = 60
s_pos -= 1

start two indices at shadow's position
left, right = s_pos, s_pos # inclusive

shadow_alive = True
players_alive = True
shadows_turn = True # shadow starts

while shadow_alive and players_alive:

 if shadows_turn:
 # find the index of next player to the left and right of shadow
 while left > 0 and H[left] <= 0:
 left -= 1
 while right < 199 and H[right] <= 0:
 right += 1

 # apply damage to these players

 H[left] -= s_dam
 H[right] -= s_dam

 # if they died, remove their contribution to total damage
 if H[left] <= 0:
 p_dam -= D[left]
 if H[right] <= 0:
 p_dam -= D[right]

 # if the players can do no more damage, they all must be dead
 if p_dam <= 0:
 players_alive = False

 # players turn
 else:
 s_health -= p_dam

 # check if shadow died
 if s_health <= 0:
 shadow_alive = False

 shadows_turn = not shadows_turn # switch turns

print results
if shadow_alive:
 print("Shadow wins!")
else:
 print("We win! Players alive: ", end='')
 for i in range(200):
 if H[i] > 0:
 print(i + 1, end=' ')
 print()

C++ Example

#include <iostream>
#include <vector>
using namespace std;

#define LEN 200

int main() {
 int N, p_dam = 0;
 cin >> N; // number of players

 // each player's health and damage they can deal
 vector<int> health(LEN), damage(LEN);

 // read in players
 for (int i = 0; i < N; i++) {
 int pos, dam;
 cin >> pos >> dam;
 damage[pos - 1] = dam;
 health[pos - 1] = 10;
 p_dam += dam;
 }

 // read in shadow
 int s_pos, s_dam, s_health = 60;
 cin >> s_pos >> s_dam;
 s_pos -= 1; // since our vector is 0 indexed

 // start two iterators at shadow's position
 vector<int>::iterator left, right;
 left = right = health.begin() + s_pos; // inclusive pointers

 bool shadow_alive, players_alive, shadows_turn;
 shadow_alive = players_alive = shadows_turn = true;

 // simulate
 while (shadow_alive && players_alive) {
 if (shadows_turn) {
 // find closest players to shadow
 while (left > health.begin() && *left <= 0)
 left--;
 while (right < health.end() && *right <= 0)
 right++;

 // apply damage to these players
 *left -= s_dam;
 *right -= s_dam;

 // if they died, remove their contribution
 if (*left <= 0)
 p_dam -= damage[left - health.begin()];
 if (*right <= 0)
 p_dam -= damage[right - health.begin()];

 // if players still deal collective damage then some
 // must be alive
 players_alive = p_dam > 0;
 }

 else {
 // players turn
 s_health -= p_dam; // shadow takes collective damage
 shadow_alive = s_health > 0;
 }

 shadows_turn = !shadows_turn;
 }

 // output simulation results
 if (shadow_alive) {
 cout << "Shadow wins!" << endl;
 } else {
 cout << "We win! Players alive:";
 for (auto it = health.begin(); it != health.end(); it++) {
 if (*it > 0) {
 // + 1 to go from 0 to 1 based indexing
 cout << ' ' << it - health.begin() + 1;
 }
 }
 cout << endl;
 }
}

Totem Pole
https://train.nzoi.org.nz/problems/1022

Subtasks 1 & 2 (Python)
For subtasks 1 and 2 we can do a direct simulation. For each position record if it has a carving,
and loop over the positions to find where a person will make their carving.

N, T = map(int, input().split())

records if a position has a carving
carved = [False] * (T + 1)
The positions have 1-based indexes, so use a list of length T+1.
[False] creates a list with one element, and multiplying a list
by a number repeats the list that many times in Python.

number of people who made carvings
count = 0
for h in map(int, input().split()):

 # limit h to top of pole to prevent index errors
 h = min(h, T)

 # find the next available position to make a carving
 while h >= 1 and carved[h]:
 h -= 1

 # increment the counter if the person makes a carving
 if h >= 1:
 carved[h] = True
 count += 1

print(count)

Python uses 0-based indexing, which means the valid indexes in a list of length are to N 0

. The carving positions are to , which makes it slightly awkward to use them as−1N 1 T
indexes. This program uses a neat trick: it records the status of each carving position in a list
called carved of length . The extra slot means it can use the indexes to , effectively T + 1 1 T
making the list 1-based (index is never used, so this trick "wastes" a tiny amount of memory). 0
Another option is to make the carving positions 0-based by subtracting 1 from all the heights.

This program takes at most "steps" to run because it has an outer for-loop that iterates ×TN
over the people, and for each person the inner while-loop iterates over a list of length . The N T

https://train.nzoi.org.nz/problems/1022

while-loop won't always iterate over all elements because it starts from and stops early T h
when it finds an available carving position, so in fact the number of step will be smaller.

The time limit is 1 second. A good rule of thumb for Python is 1 million operations per second,
so when and are 1,000 the program runs within the time limit. But when and are N T N T
100,000 (for subtask 3) the program is too slow.

Subtasks 1 & 2 (C++)
This is a C++ version of the Python program.

#include <iostream>
#include <vector>
using namespace std;

int main() {
 int n, t;
 cin >> n >> t;
 // records if a position has a carving (1-based)
 vector<bool> carved(t + 1);

 // the number of people who made carvings
 int count = 0;
 for (int i = 0; i < n; i++) {
 int h;
 cin >> h;
 // limit h to top of pole to prevent index errors
 if (h > t) {
 h = t;
 }
 // find where the person will make their carving
 while (h >= 1 && carved[h]) {
 h--;
 }
 if (h >= 1) {
 // the person will make a carving at height h
 carved[h] = true;
 count++;
 } else {
 // the person won't make a carving
 }
 }
 cout << count << "\n";
}

Sidebar: out-of-range indexes in C++

The problem statement implicitly allows people to be taller than the totem pole (as the sample
data demonstrates), but it's easy to miss this and leave out the if-statement that limits to . h T

Because of that the test data for subtask 1 intentionally does not have such test cases besides
the sample.

Surprisingly, the C++ program passes the sample data even without the if-statement. In the
sample is 4 and there is a person of height 6, so without the if-statement the program would T
try to access index 6 in a vector of length = 5 (valid indexes: 0 to 4). In many languages T + 1
including Python and Java that would display an error message and terminate the program, but
in C++ accessing an array/vector with an index that is out of range causes "undefined
behaviour". Usually the program will either crash with a segmentation fault or read/write an
arbitrary piece of memory (which can cause completely unpredictable behaviour, for example it
could change the value of an unrelated variable).

There are various ways to improve bounds checking in C++:

• For vectors, use at() instead of [], for example carved.at(h) instead of carved[h].
(This is inconvenient to type, so it is not commonly used.)

• If compiling with GCC, add the option -D_GLIBCXX_DEBUG, for example
 g++ -D_GLIBCXX_DEBUG program.cpp
to enable error checking in the standard library. This will make [] on vectors check
bounds, among other things.

• If compiling with GCC, add the options -g -fsanitize=address to enable
AddressSanitizer, a memory error detector. It will detect out of bound array indexes in
many cases, among other things. (The option -g generates debugging information, which
adds line numbers to error messages.)

Subtask 3
There are several ways to find the next available carving position more efficiently:

• Use a sorted set to keep track of the available carving positions. This allows the next
available carving position below a height to be found and removed in . A C++ (log(T))O
implementation is given in Appendix 1. (Python's standard library does not include a sorted
set type, so this approach can't be used.)

• Use a range tree to track the highest available carving position in each range.

• Use a Fenwick tree to efficiently count the number of available carving positions up to each
height, and use a binary search to find the highest available position.

• Use a disjoint-set data structure to track contiguous groups of carvings and record the
height of the lowest carving in each group.

There is also a completely different and much simpler solution, which makes use of the
following observation: The process where each person places a carving at the highest position
they can reach results in the greatest possible number of carvings, regardless of the people's
order (proof given in Appendix 2).

The optimal number of carvings can be found by sorting the people from shortest to tallest and
having each person make a carving at the lowest available position. This is simple to implement:

Python

n, t = map(int, input().split(" "))
hs = list(map(int, input().split(" ")))
hs.sort()
count = 0 # number of carvings (made at heights 1..count)
for h in hs:
 if h > count and count < t:
 count += 1
print(count)

C++

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

int main() {
 int n, t;
 cin >> n >> t;
 vector<int> heights;
 for (int i = 0; i < n; i++) {
 int h;
 cin >> h;
 heights.push_back(h);
 }
 sort(heights.begin(), heights.end());

 int count = 0; // number of carvings (made at heights 1..count)
 for (auto h : heights) {
 if (h > count && count < t) count++;
 }

 cout << count << endl;
}

Appendix 1: Sorted set solution (C++)

This program uses a sorted set to keep track of the available carving positions.

#include <iostream>
#include <vector>
#include <set>
using namespace std;

int main() {
 int n, t;
 cin >> n >> t;
 vector<int> all; // to build the numbers 1 to T
 all.reserve(t);
 for (int i = 1; i <= t; i++) { all.push_back(i); }
 set<int> available(all.begin(), all.end());
 int count = 0;
 for (int i = 0; i < n; i++) {
 int h;
 cin >> h;
 // We want to find the biggest available position <= h.
 // This operation is not supported directly, but we can use
 // upper_bound() to find the first element > h then go back one.
 set<int>::iterator pos = available.upper_bound(h);
 if (pos == available.begin()) {
 // no available position
 } else {
 pos--; // go back one element
 available.erase(pos);
 count++;
 }
 }
 cout << count << "\n";
}

Appendix 2: Proof of observation (Extra)

"The process where each person places a carving at the highest position they can reach results
in the greatest possible number of carvings, regardless of the people's order."

The result of the process can be represented as a mapping from people to carving heights
(or -1 if a person does not make a carving).

Let M be the mapping produced by the process on the line of people P1..Pn, and let X be an
optimal mapping on those people (i.e. with the most carvings possible). This proof shows
that X can be modified to be equal to M without decreasing the number of carvings in X,
which means M has at least as many carvings as X and hence M is optimal.

Let Pi be the first person for which M(Pi) != X(Pi). We must have M(Pi) > X(Pi) because the
mappings are the same up to Pi and the process chooses M(Pi) to be the highest available
carving position. We show that X(Pi) can be changed to M(Pi).

If there is a later person Pj for which X(Pj) == M(Pi), swap X(Pi) and X(Pj). This is
permissible because:

• Pi can carve at height M(Pi) and M(Pi) == X(Pj) so Pi can carve at height X(Pj)

• Pj can carve at height X(Pj) and X(Pj) == M(Pi) > X(Pi) so Pj can carve at height X(Pi)

If there is no person Pj for which X(Pj) == M(Pi), we can simply set X(Pi) to M(Pi).

It's not possible for an earlier person Pj to have X(Pj) == M(Pi), because X and M are equal
up to Pi so X(Pj) == M(Pj) != M(Pi).

Hence we can change X(Pi) to M(Pi), and with repetition make X equal to M. Since the
number of carvings in X does not decrease at any point, M must have at least as many
carvings as X.

An Average Problem
https://train.nzoi.org.nz/problems/893

Subtask 1
If the mean, median, and mode are all the same, it is always possible to generate a valid
sequence – we can just output that number times.N

n,mean,median,mode = map(int,input().split())
if mean == median == mode:
 print("Possible")
 print("{} ".format(mean)*n)

Subtask 2
For , it is clearly only possible if the mean, median, and mode are equal, and in this N = 1
case we can just use the same solution as subtask 1.

For , the mode has to occur at least twice (otherwise it cannot be the most frequent N = 3
value), and the median has to occur at least once. But if the median is not the same as the
mode, then our sequence would be [median, mode, mode], and the “middle” element would
be the mode, not the required median. Therefore, the median must be equal to the mode – if
not, it is impossible to generate a solution. So, our solution will always uses the median
twice, which satisfies both the median and mode criteria. For the last element, we calculate
the required value to satisfy the mean criterion: . If this value doesn’t ean edianN × m − 2 × m
fit within the valid range (1 to 1,000,000), it is impossible to generate a valid sequence.

continuing from the subtask 1 solution
elif n == 1:
 print("Impossible")
elif n == 3:
 x = n*mean - 2*median
 if median != mode or x < 1 or x > 1000000:
 print("Impossible")
 else:
 print("Possible")
 print(median, median, x)

Subtask 3
For this subtask, it is guaranteed that the median is always equal to the mode. Let’s forget
about the mean criterion for now. Instead, let’s try to generate a sequence satisfying the
median and mode criteria with the lowest mean possible. To satisfy the median criterion, we

https://train.nzoi.org.nz/problems/893

need the upper half of the sequence to be equal to or above the median, so it’s easy to see
that we should take the median times. This also satisfies our mode criterion, so we N /2⌉ ⌈ 1

can then take 1 (the lowest possible value) ⌊ ⌋ times to complete our “lowest mean” /2N
sequence. Let be the sum of this sequence. We can similarly generate a sequence with the x
highest mean possible by taking the median times, and 1,000,000 (the highest N /2⌉ ⌈
possible value) ⌊ ⌋ times – let be the sum of this sequence. Then it is possible to /2N y
generate a valid sequence if and only if .eanx ≤ m × n ≤ y

if median == mode:
 x = median*(n//2+1) + 1*(n//2)
 y = median*(n//2+1) + 1000000*(n//2)
 if x <= mean*n <= y:
 print("Possible")
 else:
 print("Impossible")

You may have noticed that both the “lowest mean” and “highest mean” sequences use the
median times. In fact, it is possible to generate any sequence using the median N /2⌉ ⌈
exactly times, satisfying the median and mode criteria with an integer sum between N /2⌉ ⌈ x
and – if we start at the “lowest mean” sequence, we can repeatedly increment each of the y
remaining ⌊ ⌋ elements to increase the sum by 1 each time, until we reach the “highest /2N
mean” sequence. However, this can be too slow, so instead of incrementing by 1, we will
shift elements all the way up to 1,000,000 in one go, stopping once we reach the required
total to satisfy the mean criterion.

if median == mode:
 solution = [median] * (n//2+1)
 remaining = [1] * (n//2)
 total = sum(solution+remaining)
 if total > mean*n:
 print("Impossible")
 sys.exit()

 # shift remaining elements upwards until we reach the required total
 for x in range(len(remaining)):
 total -= remaining[x]
 remaining[x] = min(1000000, mean*n - total)
 total += remaining[x]
 if total == mean*n:
 break

 if total != mean*n:
 print("Impossible")
 else:
 print("Possible")

1 Note that ⌈x⌉ denotes the ceiling of x (rounded up to the nearest integer), and ⌊x⌋ denotes
the floor of x (rounded down to the nearest integer).

 print(' '.join(map(str,solution+remaining)))

Another working strategy is to take the median times, then calculate the required sum N /2⌉ ⌈
of the remaining elements: – let this value be . We can divide ean N /2⌉ edian N × m − ⌈ × m r r
by ⌊ ⌋ to get the average value of the remaining elements. If this is an integer, we can just /2N
take it ⌊ ⌋ times to complete our sequence. Otherwise, we use the floor instead, and /2N
distribute the remainder of ⌊ ⌋ across the remaining ⌊ ⌋ elements. /r /2N /2N

if median == mode:
 solution = [median] * (n//2+1)
 r = n*mean - median*(n//2+1)
 quotient = r // (n//2) # note that this fails when n == 1
 remainder = r % (n//2)
 solution += [quotient] * (n // 2 - remainder)
 solution += [quotient+1] * remainder
 if min(solution) < 1 or max(solution) > 1000000:
 print("Impossible")
 else:
 print("Possible")
 print(' '.join(map(str,solution)))

Subtask 4
Our subtask 3 solution relies on the observation that we can always take the mode (or
median) times, but this no longer holds if the median is not equal to the mode. N /2⌉ ⌈
Nevertheless, suppose we knew how many times the mode occurs in our solution – let this
value be . To make things simpler, we’ll also assume that the median is not equal to the k
mode. Now, let’s once again generate a sequence that satisfies the median and mode
criteria, with the lowest mean possible.

We’ll start off by taking the mode times, and the median once. To satisfy the median k
criterion, we need ⌊ ⌋ elements to be equal to or below the median, and ⌊ ⌋ elements /2N /2N
to be equal to or above the median. Clearly, we want to take the value 1 as many times as
possible – but not any more than times (unless 1 is the mode). Then we do the same k − 1
for values 2, 3, 4, etc. until we’ve taken ⌊ ⌋ elements below the median. Similarly, we take /2N
values from the median upwards until we’ve taken ⌊ ⌋ values above or equal to the /2N
median.

We can use a similar process to generate a sequence with the highest mean possible. Again,
let and denote the sums of the lowest and highest mean sequences. Then, if x y

, a valid sequence exists that uses the mode times. Finally, we will bruteeanx ≤ m × n ≤ y k
force across all possible values of to determine whether a valid sequence exists. As there k
are possible values of , and each sequence takes time to generate, the overall (N)O k (N)O
time complexity of this solution is .(N)O 2

from collections import Counter

def generate(mode_freq, p1, p2, direction):
 """Generates either the minimum (or maximum) mean sequence for
 the given mode frequency (minimum if direction == 1, maximum
 if direction == -1). p1 and p2 are the lowest (or highest) elements
 we can take on each side of the median."""

 sequence = [mode] * mode_freq + [median]
 counts = Counter(sequence)

 # take n/2 elements left of the median
 for x in range(n//2 - (mode_freq if mode < median else 0)):
 while counts[p1] >= mode_freq-1: p1 += direction
 counts[p1] += 1
 sequence.append(p1)

 # take n/2 elements right of the median
 for x in range(n//2 - (mode_freq if mode > median else 0)):
 while counts[p2] >= mode_freq-1: p2 += direction
 counts[p2] += 1
 sequence.append(p2)

 assert(min(p1,p2) >= 1 and max(p1,p2) <= 1000000)
 return sequence

n,mean,median,mode = map(int,input().split())

if median == mode:
 # refer to subtask 3 solution
else:
 # try each possible mode frequency
 for mode_freq in range(2, n//2+1):
 try:
 x = sum(generate(mode_freq, 1, median, 1))
 y = sum(generate(mode_freq, median, 1000000, -1))
 except AssertionError:
 continue
 if x <= n*mean <= y:
 print("Possible")
 break
 else:
 print("Impossible")

To actually generate the sequence, we can use a similar idea to our subtask 3 solution. Let’s
start from the lower bound sequence from above. Elements in the lower half of the sequence
can be shifted up to the median, and elements in the upper half can be shifted up to
1,000,000. We will start by shifting elements in the upper half to allow elements in the lower

half to move to the median later. We also need to ensure that we never shift any of the mode
elements.

def solve(mode_freq):
 sequence = generate(mode_freq, 1, median, 1)
 sequence.sort(reverse=True)
 counts = Counter(sequence)
 total = sum(sequence)
 p = 1000000 # shift upper half elements up to 1000000

 for index, x in enumerate(sequence):
 if index == n//2: p = median # shift lower half elements up to the median
 if x == mode: continue # do not move any mode elements

 # shift one element from x up to p
 counts[x] -= 1
 total -= x
 while counts[p] >= mode_freq-1: p -= 1
 sequence[index] = min(p, mean*n-total)
 counts[sequence[index]] += 1
 total += sequence[index]

 print("Possible")
 print(' '.join(map(str,sequence)))

Full Solution
Instead of actually generating entire lowest/highest mean sequences for each possible
mode frequency , notice that we only need the sums of each sequence to determine if is k k
valid. Furthermore, almost all of the elements form two contiguous ranges on each side of
the median, with each value occurring exactly times in the sequence. Also recall that k − 1
the sum of numbers from 1 to can be calculated with . Using this formula, we N (N)/2N + 1
can calculate the sum of elements in each contiguous range in time!(1)O

Once we’ve found a valid , we can then use our solution from subtask 4 to actually k
generate a sequence. This reduces the overall time complexity of our solution to .(N)O

def series_sum(a, b):
 """Returns the sum of numbers from a to b (inclusive)."""
 if a > b: return series_sum(b, a)
 return b*(b+1)//2 - a*(a-1)//2

def calc(area, height, mx, start_pos):
 """Take 'area' elements starting from 'start_pos',
 where we can take each value up to 'height' times
 (maximum if mx == 1, minimum if mx == -1)."""

 subtotal = 0

 width = area // height
 remainder = area % height
 end_pos = start_pos - width*mx + mx

 # mode intersects with the current range, we need to avoid double counting modes
 if start_pos*mx >= mode*mx and mode*mx >= end_pos*mx:
 end_pos -= mx
 subtotal -= mode * height

 if width: subtotal += series_sum(start_pos, end_pos) * height
 if remainder and end_pos-mx == mode: end_pos -= mx
 if remainder and end_pos-mx != mode: subtotal += remainder * (end_pos-mx)

 return subtotal, end_pos, remainder

def find_min_max(mode_freq, mx):
 """Finds and returns the minimum or maximum sum possible.
 (maximum if mx == 1, minimum if mx == -1)"""

 total = mode * mode_freq
 height = mode_freq-1 # max number of each value we can take

 area = n//2 # required number of values
 if mode*mx > median*mx: area -= mode_freq # to avoid double counting modes
 subtotal, end_pos, remainder = calc(area, height, mx,
 1000000 if mx == 1 else 1)
 total += subtotal

 area = n//2+1 # one extra to include the median
 if mode*mx < median*mx: area -= mode_freq # to avoid double counting modes
 if remainder and end_pos-mx == median:
 # left/right sides overlap at the median, move the remainder to the right
 # side instead to simplify calculations
 cur_total -= remainder * median
 area += remainder
 total += calc(area, height, mx, median)[0]

 return total

n,mean,median,mode = map(int,input().split())

if median == mode:
 # refer to subtask 3 solution
else:
 # try each possible mode frequency
 for mode_freq in range(2, n//2+1):
 # check that we have enough space on each side of the median
 height = mode_freq-1
 right_spaces = (1000000-median) * height + height-1
 left_spaces = (median-1) * height + height-1
 if mode < median: left_spaces += 1

 if mode > median: right_spaces += 1
 if min(left_spaces, right_spaces) < n//2: continue

 x = find_min_max(mode_freq, -1)
 y = find_min_max(mode_freq, 1)
 if x <= mean*n <= y:
 solve(mode_freq) # refer to subtask 4 solution
 break
 else:
 print("Impossible")

Big O complexity
Computer scientists like to compare programs using something called Big O notation. This
works by choosing a parameter, usually one of the inputs, and seeing what happens as this
parameter increases in value. For example, let's say we have a list items long. We oftenN
call the measured parameter . For example, a list of length .N N

In contests, problems are often designed with time or memory constraints to make you think
of a more efficient algorithm. You can estimate this based on the problem's constraints. It's
often reasonable to assume a computer can do about 10 million to 100 million useful
operations per second. For example, if the problem specifies a run time of 1 second and an
input N as big as 100 thousand, then you automatically know an O(N2) algorithm will not
work since 100 thousand squared is 10 billion operations.

Time complexity
The time taken by a program is usually estimated on the number of processor operations.
For example, an addition or a compare is one operation.a + b a < b

O(1) time means that the number of operations it performs does not increase as N
increases (i.e. does not depend on). For example, say you have a program containing a N
list of items and want to access the item at the ith index. This will take the same amount of N
computation regardless of . You can't get much better efficiency than that.N

O(log(N)) time suggests the program takes a couple of extra operations every time N1

doubles in size. For example, finding a number in a sorted list using binary search might take
3 operations when is 8 but it will only take one extra operation if we double to 16. As N N
far as efficiency goes, this is pretty good, since generally has to get very very large before N
a computer starts to struggle.

O(N) time means you have an algorithm where the number of operations is directly
proportional to . For example, a maximum finding algorithm max() will need to compare N
against every item in a list of length to confirm you have indeed found the maximum. N
Usually if you have one loop that iterates times your algorithm is O(N).N

O(N2) time means the number of operations is proportional to . For example, suppose N 2
you had an algorithm which compared every item in a list against every other item to find
similar items. For a list of items, each item has to check against the remaining N N − 1
items. In total, checks are done. This expands to . For Big O, we always (N)N − 1 N 2 − N
take the most significant term as the dominating factor, which gives O(N2). This is generally

1 More formally, it means there exists some constant c for which the program takes at most c extra
operations every time N doubles in size.

not great for large values of , which can take a very long time to compute. As a general N
rule of thumb, in contests, O(N2) algorithms are only useful for input sizes of up to .0KN ≤ 1

	Intro - Write-up
	Easy Problems - Write-up
	Shadow's Battle - Rewritten
	Totem Pole - Write-up
	An Average Problem Analysis
	Big O

