
NZIC Round 1 2019
Questions

1. House of Cards: Maths or a simple loop
2. Adding Teas: A list and a while loop
3. Tea Party: Nested loops and storing information
4. Modern Art: 2d arrays and coordinate compression
5. Twilight Sparkle's Magical Research: Fast exponentiation

Tips for next time
Remember, this is a contest. The only thing we care about is that your code runs. It doesn't
need to be pretty or have comments. There is also no need to worry about invalid input.
Input will always be as described in the problem statement.

There are a few common errors that students make in all contests. These can be easily
avoided if students can

Read the Questions
Don't underestimate the value of taking time to read and understand the question. You will
waste exponentially more time powering off thinking you have the solution only to discover
you missed something obvious.

In the real world, it is very rare to be provided with a problem in a simplistic form. Part of the
challenge with these contests is reading and understanding the question, then figuring out
what algorithm will be needed. Before submitting, check to make sure you have done
everything the question asks you to do.

There is no point in "optimising"
It's true that Python is often a bit slower than a compiled language such as C++. However,
we try our best to design the problems so the full solution is achievable in both C++ and
Python. In this round, all of the model solutions were written in Python. Trying to find small
efficiency improvements by reducing the number of calculations you do per cycle isn't going
to get you more marks. What will help you is thinking about a better way to solve the
problem in general, i.e. a better algorithm. By "better" we usually mean so that it uses less
memory or takes less time to run. For example, choosing a good algorithm was the
difference between the program taking more than 3 hours vs taking a few milliseconds in the
Modern Art problem. This is how we differentiate the top students. If you'd like to be one of
those top students then have a play with some of the different approaches to the problems
discussed below.

NZIC 2019 R1 Solutions © NZOI 2019

Test code
Many students submitted broken or syntactically incorrect code as initial solutions. This
wastes time while you wait for the server to run your code. It is far more efficient to test it
yourself first.

Test using edge cases
However, the example cases are by no means a complete test. You need to think of some
other simple tests to make sure your program behaves. Part of being is good programmer is
learning to think of all the edge cases and making sure your code handles them as you
would expect. These might include the lowest and highest number you could receive as
input.

NZIC 2019 R1 Solutions © NZOI 2019

House of Cards
https://train.nzoi.org.nz/problems/869

If a tower is N high, we need to calculate the number of cards needed. Let's break it down...

1. If we go through each level starting at 1 and going up to N, the number of angled
cards (red ones) at each level is always 2 times which ever level we are at. e.g. level
2 has 4 angled cards.

2. The number of cards on the bottom is always equal to the level we are on, except for
the last level. Therefore, one possible solution is as follows

n = int(input())

result = 0
for story in range(1, n + 1):
 red = 2 * story
 grey = story
 result += red + grey

Bottom story doesn't have a platform
result -= n

print(result)

This solution will get 100%, but out of interest let us see if we can improve it...

From step 1. above, we know that the number of red cards is twice the floor number. Let's
call the floor number and the number of red cards on that floor . Then we can say .i r ir = 2
Additionally, we can look at 2. above. It would be nice to have an equation just like we do for

 that also works for (the grey horizontal cards). However, the last line makes thatr g
difficult. Instead, let us restate 2. to say the number of cards on the floor above is the same
as the current floor level minus 1. e.g. the first floor has zero cards on the floor above it. This
way, we can say , which works for all floors! That means the number of cards ong = i − 1
each floor is .i ir + g = 2 + i − 1 = 3 − 1

NZIC 2019 R1 Solutions © NZOI 2019

https://train.nzoi.org.nz/problems/869

The last useful fact to remember is that the sum of numbers from 1 to N can be calculated
with (more info). That means, we can calculate the total cards for the tower by(N)/2N + 1
replacing with . This gives usi (N)/2N + 1

Therefore, a much simpler program would be

n = int(input())

print(n * (3 * n + 1) // 2)

Then there is also this one liner, because Python...

print((lambda n: n * (3 * n + 1) // 2)(int(input())))

NZIC 2019 R1 Solutions © NZOI 2019

https://www.youtube.com/watch?v=JH2JyPgcNDg

Adding Teas
https://train.nzoi.org.nz/problems/872

Python examples

gcepls = [0, 0, 0, 0, 0, 0]
while True:
 tea = input()
 if tea[0] == "G":
 gcepls[0] += int(tea[2:])
 elif tea[0] == "C":
 gcepls[1] += int(tea[2:])
 elif tea[0] == "E":
 gcepls[2] += int(tea[2:])
 elif tea[0] == "P":
 gcepls[3] += int(tea[2:])
 elif tea[0] == "L":
 gcepls[4] += int(tea[2:])
 elif tea[0] == "S":
 gcepls[5] += int(tea[2:])
 else:
 break

totals = map(str, gcepls)
print(" ".join(totals))

teas = {'G': 0, 'C': 1, 'E': 2, 'P': 3, 'L': 4, 'S': 5}
pantry = [0 for _ in range(6)]
ln = input()

while 'D' not in ln:
 t, n = ln.split()
 pantry[teas[t]] += int(n)
 ln = input()

print(' '.join(map(str, pantry)))

C++ example

#include <bits/stdc++.h>

using namespace std;

int main()
{
 map<char, int> tea;
 char t;
 int x;
 cin >> t;

NZIC 2019 R1 Solutions © NZOI 2019

https://train.nzoi.org.nz/problems/872

 while (t != 'D') {
 cin >> x;
 tea[t] += x;
 cin >> t;
 }

 for (auto ch : (string)"GCEPLS") cout << tea[ch] << ' ';
 cout << endl;
}

NZIC 2019 R1 Solutions © NZOI 2019

Tea Party
https://train.nzoi.org.nz/problems/870

Subtask 1
For subtask 1, it is sufficient to “simulate” each party, by looping over each person’s favourite
tea and subtracting from the host’s stock. If the host’s stock reaches 0, then we increase the
count of disgruntled party goers instead. Note that instead of storing each person’s six tea
stocks, it is easier to just simulate each party as we read in the stocks and store the count of
disgruntled party goers, even if that person isn’t a potential host – in the worst case, canK
be as large as anyway. The time complexity of this solution is , since for each of theN (N)O 2

(potential) parties, we iterate over tea preferences .N N N × N = N 2

Python example

teas = "GCEPLS"
N, K = map(int, input().split())
fav_teas = []
parties = []

for x in range(N):
 name, fav_tea = input().split()
 fav_teas.append(fav_tea)

for x in range(N):
 line = input().split()
 host = line[0]
 stocks = list(map(int, line[1:]))
 missed = 0
 for tea in fav_teas:
 tea_index = teas.index(tea)
 if stocks[tea_index] == 0:
 missed += 1
 else:
 stocks[tea_index] -= 1
 parties.append((host, missed))

for x in range(K):
 host = input()
 for party in parties:
 if party[0] != host:
 continue
 if party[1] == 0:
 print(host, "Successful")
 elif party[1] <= 2:
 print("{} Mildly Successful ({})".format(host, party[1]))
 else:
 print("{} Disaster ({})".format(host, party[1]))
 break

NZIC 2019 R1 Solutions © NZOI 2019

https://train.nzoi.org.nz/problems/870

Full Solution
Instead of storing each person’s favourite tea separately, we can precompute counts of how
many people prefer each of the six tea types. Then to simulate a party, we only need to loop
through the 6 tea types instead of the tea preferences. For each tea type, the number ofN
disgruntled party goers is equal to the difference (if positive) between the number of people
who prefer that tea, and the stock of that tea. This allows us to simulate all of the parties in

 time.(N)O

However, there is still one area from our last solution that is too slow – since we stored the
outcome of each party in a list, we had to iterate over up to parties to find the answer forN
each host, which takes time in total, or in the worst case where .(NK)O (N)O 2 N = K
Instead, we can use a dictionary (std::unordered_map in C++), which allows us to store
(key, value) pairs, and then later lookup the value associated with some key in time (on(1)O
average). A std::map would also work in C++, which has an lookup time.(logN)O

These two improvements reduce the overall complexity of our solution to .(N)O

Python example

teas = "GCEPLS"
N, K = map(int, input().split())
fav_teas = [0] * 6
parties = {}

for x in range(N):
 name, fav_tea = input().split()
 tea_index = teas.index(fav_tea)
 fav_teas[tea_index] += 1

for x in range(N):
 line = input().split()
 host = line[0]
 stocks = list(map(int, line[1:]))
 missed = 0
 for i in range(6):
 missed += max(0, fav_teas[i] - stocks[i])
 parties[host] = missed

for x in range(K):
 host = input()
 if parties[host] == 0:
 print(host, "Successful")
 elif parties[host] <= 2:
 print("{} Mildly Successful ({})".format(host, parties[host]))
 else:
 print("{} Disaster ({})".format(host, parties[host]))

NZIC 2019 R1 Solutions © NZOI 2019

C++ example

#include <bits/stdc++.h>
using namespace std;

int n,k,stock;
char pref;
string name;
string teas = "GCEPLS";
int favs[256];
unordered_map<string, int> answers;

int main() {
 cin >> n >> k;
 for(int i = 0; i < n; i++) {
 cin >> name >> pref;
 favs[pref]++;
 }
 for(int i = 0; i < n; i++) {
 cin >> name;
 for(char t : teas) {
 cin >> stock;
 answers[name] += max(0, favs[t]-stock);
 }
 }
 for(int i = 0; i < k; i++) {
 cin >> name;
 cout << name << " ";
 if(answers[name] == 0) cout << "Successful\n";
 else if(answers[name] <= 2)
 cout << "Mildly Successful (" << answers[name] << ")\n";
 else cout << "Disaster (" << answers[name] << ")\n";
 }
}

NZIC 2019 R1 Solutions © NZOI 2019

Modern Art
https://train.nzoi.org.nz/problems/891

This problem might appear to have an obvious solution, but only one student received full
marks during the contest. Remember, if your solution is reaching the time limit or memory
limit then there is probably a better way to solve the problem.

Subtask 1 (75%)
For the first subtask, the height and width of the canvas are limited to 100 cm. We can
simulate the canvas using a 2-dimensional array (or list) and filling in required squares for
each paint throw.

Common mistakes

● Not colouring in the correct cells.
● Attempting to colour in and/or count cells which are outside of the canvas area.

Python example

H, W, N = map(int, input().split())

create an empty canvas
canvas = []
for _ in range(H):
 canvas.append([None] * W)

paint the canvas
for _ in range(N):
 ln = input().split()
 # convert first 3 bits to integers
 a, b, spread = map(int, ln[:3])
 colour = ln[3]

 # upper left corner of the painted square
 x = max(a - spread, 0)
 y = max(b - spread, 0)

 # lower right corner of the painted square
 u = min(a + spread, W - 1)
 v = min(b + spread, H - 1)

 # fill in between the two coordinates
 for i in range(x, u + 1):
 for j in range(y, v + 1):
 canvas[j][i] = colour

NZIC 2019 R1 Solutions © NZOI 2019

https://train.nzoi.org.nz/problems/891

count the number of coloured cells
col = input().strip()
num_col = 0
for i in range(H):
 num_col += canvas[i].count(col)

print(num_col)

C++ example

#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

int main() {
 int height, width, n_throws;
 cin >> height >> width >> n_throws;

 vector<vector<char>> canvas(width, vector<char>(height, -1));
 for (int i = 0; i < n_throws; ++i) {
 int zx, zy, spread;
 cin >> zx >> zy >> spread;
 char colour;
 cin >> colour;

 // calculate square bounds
 int x = max(0, zx - spread);
 int y = max(0, zy - spread);
 int u = min(width - 1, zx + spread);
 int v = min(height - 1, zy + spread);

 // fill square
 for (int j = x; j <= u; j++) {
 for (int k = y; k <= v; k++) {
 canvas[j][k] = colour;
 }
 }
 }

 // count total colour
 char colour;
 cin >> colour;
 int total = 0;
 for (const auto& r : canvas) {
 total += count(r.begin(), r.end(), colour);
 }
 cout << total << endl;
}

NZIC 2019 R1 Solutions © NZOI 2019

Full Solution
For full marks we are going to need a different approach. The width and height of the canvas
can be up to 1 million cm. What's the issue here?

❓ Exercise. Can you calculate how much memory you will need to store a
1 million x 1 million 2-dimensional list/array? Assume that each cell stores a
single character (which is 1 byte). Answer at the end of this section.

A 1 million by 1 million array/list takes too long for a computer to process and consumes too
much memory. We are only allowed 1 second and 12 megabytes of space to run our
solution. What can we do?

One technique is to use what's called coordinate compression. This works by ignoring all the
cells inside each coloured square and only looking at the corner coordinates (i.e. the places
where the squares begin and end). Since there are only 50 paint throws, we only need to
care about 100 start and end points - easy as for a computer. But how do we do that?

1. Create a compressed 2d array/list. This only needs to be 100 x 100 in size since we
have a maximum of 50 paint throws giving 2 * 50 = 100 beginning and ending
coordinates.

2. We calculate the same beginning and ending coordinates as for subtask 1.
3. Add those coordinates, along with the associated colour, to a list so that we retain the

order of the paint throws.
4. Also add those coordinates to a rows and columns list. Once sorted, the index of

each coordinate in these lists will tell us the corresponding row and column position
on our compressed canvas.

5. Sort the rows and columns lists.
6. Iterate through the paint throws and colour the appropriate cells on our compressed

canvas.
7. Iterate through our compressed canvas. When a cell contains the colour we care

about, calculate the actual area of that cell using the difference between the previous
row and column coordinates, adding it to the total painted area.

The code examples below use this method.

Another student solution was to store a list of squares, defined by their top left and bottom
right coordinates. For each new square, calculate if an intersection exists. If the new square
does intersect, split the old square into pieces and remove the area covered by the new
square. Additionally, one could also use event queues where each coordinate is stored as
an event in a list and processed sequentially. There are often numerous ways to solve a
problem :)

NZIC 2019 R1 Solutions © NZOI 2019

https://stackoverflow.com/questions/29528934/coordinate-compression

Python example

H, W, N = map(int, input().split())

create an empty compressed canvas (2 * 50 = 100 max length and width)
canvas = []
for _ in range(100):
 canvas.append([None] * 100)

to_process = []
rows = set() # use sets to remove duplicates
columns = set()

paint the canvas
for _ in range(N):
 ln = input().split()
 # convert first 3 bits to integers
 a, b, c = map(int, ln[:3])
 colour = ln[3]

 # upper left corner of the painted square
 x, y = max(a - c, 0), max(b - c, 0)
 # lower right corner of the painted square
 u, v = min(a + c + 1, W), min(b + c + 1, H)

 to_process.append((x, y, u, v, colour))
 rows |= {y, v} # add y and v to the rows set
 columns |= {x, u}

convert to lists and order the coordinates so we can index them
rows = sorted(list(rows))
columns = sorted(list(columns))

fill compressed canvas
for x, y, u, v, colour in to_process:
 for i in range(rows.index(y), rows.index(v)):
 for j in range(columns.index(x), columns.index(u)):
 canvas[i][j] = colour

count the number of coloured cells
col = input().strip()
total = 0
for i in range(len(rows)):
 for j in range(len(columns)):
 if canvas[i][j] == col:
 # calculate square cm between coordinates
 total += (rows[i + 1] - rows[i]) * (columns[j + 1] -
columns[j])

print(total)

NZIC 2019 R1 Solutions © NZOI 2019

C++ example

#include <bits/stdc++.h>

using namespace std;

struct rect {
 int x, y, u, v;
 char colour;
};

vector<int> row, col;

int r (int val) {
 return lower_bound(row.begin(), row.end(), val) - row.begin();
}
int c (int val) {
 return lower_bound(col.begin(), col.end(), val) - col.begin();
}

char canvas[100][100];

int main() {
 int height, width, n_throws;
 cin >> height >> width >> n_throws;

 row = {0, height};
 col = {0, width};
 vector<rect> to_process;
 for (int i = 0; i < n_throws; ++i) {
 int zx, zy, spread;
 cin >> zx >> zy >> spread;
 char colour;
 cin >> colour;

 // calculate square bounds
 int x = max(0, zx - spread);
 int y = max(0, zy - spread);
 int u = min(width, zx + spread + 1);
 int v = min(height, zy + spread + 1);

 to_process.push_back({x, y, u, v, colour});
 col.push_back(x);
 col.push_back(u);
 row.push_back(y);
 row.push_back(v);
 }

 sort(row.begin(), row.end());
 sort(col.begin(), col.end());
 row.erase(unique(row.begin(),row.end()), row.end());
 col.erase(unique(col.begin(),col.end()), col.end());

NZIC 2019 R1 Solutions © NZOI 2019

 for(rect p : to_process) {
 for(int i = r(p.y); i < r(p.v); i++) {
 for(int j = c(p.x); j < c(p.u); j++) {
 canvas[i][j] = p.colour;
 }
 }
 }

 char colour;
 cin >> colour;
 long long res = 0;
 for(size_t i = 0; i < row.size() - 1; i++) {
 for(size_t j = 0; j < col.size() - 1; j++) {
 if(canvas[i][j] == colour) {
 long long r = row[i + 1] - row[i];
 long long c = col[j + 1] - col[j];
 res += r * c;
 }
 }
 }
 cout << res;
}

Exercise Answer:

A 1 million x 1 million grid has 1 trillion cells. If each cell uses 1 byte, then that's 1 trillion
bytes or 931 GB. That's a fair bit of RAM. Additionally, as an estimate, a computer can
generally do between 10 million to 100 million useful things per second with a compiled
language like C++. So, it would probably also take more than 3 hours to finish it's
calculations - assuming it had enough memory! The above C++ solution took 0.004 seconds
and used less than 256 kB of memory. The Python solution took still only took 0.072
seconds and used about 3 MB of memory. It's amazing what you can achieve by using a
better algorithm.

NZIC 2019 R1 Solutions © NZOI 2019

Twilight Sparkle’s Magical Research
https://train.nzoi.org.nz/problems/868

Subtask 1
For the first subtask, it’s enough to simulate the spell with a for loop:

u, v = 1, 1
for i in range(n):
 u, v = a*u + b*v, c*u + d*v
print(u, v)

If you’ve coded the Fibonacci sequence before, then this solution may seem familiar. In fact,
the spell a=0, b=1, c=1, d=1 will generate Fibonacci numbers (try it!).

Subtask 2
For the second subtask, the numbers start to get very large.

In C++, this would make the variables overflow and give a wrong answer. In Python, the
program might run out of memory instead.

Luckily, the problem statement gives us a way out. It tells us to only give the “last 5 digits” of
the answer. We can do that using the modulo (%) operator:

print(u % 10000, v % 10000)

That stops the final answer from getting too large. But the numbers might get too big before
that point. We want to prevent overflow all the way through the program, not just at the end.

Let's put another modulo inside the loop:

for i in range(n):
 u, v = (a*u + b*v) % 10000, (c*u + d*v) % 10000

These changes are enough to pass subtask 2.

Subtask 3
In the final subtask, the number of times to cast the spell can go up to a billion (109). A good
rule of thumb is that a computer takes about 1 second to execute a billion instructions. Since

NZIC 2019 R1 Solutions © NZOI 2019

https://train.nzoi.org.nz/problems/868
https://stackoverflow.com/a/24846766/617159

each step of the loop has many instructions, there’s no way that our previous solution can
finish in time!

It's clear that we can't use a simple loop anymore. We need something better.

Combining spells
If we cast two different spells, one after the other, on the same pile of ukuleles and
vuvuzelas, what does the result look like?

We can work it out with a bit of algebra. Suppose that the two spells are anda , , ,)(1 b1 c1 d1
 respectively.a , , ,)(2 b2 c2 d2

Then, after the first spell, we’ll have

u vu′ = a1 + b1

ukuleles, and

u vv′ = c1 + d1

vuvuzelas.

And after the second spell, we’ll have

u vu′′ = a2 ′ + b2 ′
 (a u v) (c u v) = a2 1 + b1 + b2 1 + d1
 a a b)u b a b)v = (1 2 + c1 2 + (1 2 + d1 2

ukuleles, and

u vv′′ = c2 ′ + d2 ′
 (a u v) (c u v) = c2 1 + b1 + d2 1 + d1
 c d)u b c d)v = (a1 2 + c1 2 + (1 2 + d1 2

vuvuzelas.

There’s something interesting about the equations for and . If you squint a bit, theu′′ v′′
right-hand sides look like another spell. Indeed, rather than treating the two spells as
separate things, we can combine them into a larger spell with the parameters:

a ba3 = a1 2 + c1 2
a bb3 = b1 2 + d1 2
c dc3 = a1 2 + c1 2
c dd3 = b1 2 + d1 2

Using these equations, let’s write a function to combine spells, and a function to cast them:

modulo = 10000

NZIC 2019 R1 Solutions © NZOI 2019

def combine_spells(s1, s2):
 a1, b1, c1, d1 = s1
 a2, b2, c2, d2 = s2
 return (
 (a1 * a2 + c1 * b2) % modulo,
 (b1 * a2 + d1 * b2) % modulo,
 (a1 * c2 + c1 * d2) % modulo,
 (b1 * c2 + d1 * d2) % modulo)

def cast_spell(s, u, v):
 a, b, c, d = s
 return ((a * u + b * v) % modulo, (c * u + d * v) % modulo)

Now, instead of applying the spell over and over again, we can build up a really big spell and
apply it all at once!

s = (a, b, c, d)
big_spell = (1, 0, 0, 1)
for i in range(n):
 big_spell = combine_spells(big_spell, s)

u, v = cast_spell(big_spell, 1, 1)
print(u, v)

❓ Exercise. On paper, work out what this code does when . Does thatn = 0
explain why big_spell is initialized to (1, 0, 0, 1)?

That’s cool, but it isn’t any faster than the original solution. We’re still looping n times; we’re
just building up the spell n times instead of applying it. But this change opens up a neat trick
which can make the solution much faster.

Exponentiation by squaring
Let be an arbitrary spell.S

Our original solution, casting the spell times, might look like this:n

(S(S(S(u, v))))S

When we’re building up the spell and casting it in one go, it might look like this instead:

((S)))(u, v)(· S · S · S

NZIC 2019 R1 Solutions © NZOI 2019

In other words, we’re combining the spells from left to right.

But what if we combine the spells in a different order?

(S) S))(u, v)(· S · (· S

This should give us the same answer—but since appears twice, we can compute itS)(· S
once and use it both times, cutting the run time in half! Moreover, on larger values of , thisn
halving trick can be used multiple times, leading to an speedup.(log)O n

This algorithm is called exponentiation by squaring, and is the key to solving subtask 3.

def spell_power(s, n):
 if n == 0:
 return (1, 0, 0, 1)
 r = spell_power(s, n//2)
 r = combine_spells(r, r)
 if n % 2 == 1:
 r = combine_spells(r, s)
 return r

u, v = cast_spell(spell_power(s, n), 1, 1)

print(u, v)

NZIC 2019 R1 Solutions © NZOI 2019

Full solution (Python)
#!/usr/bin/env python3

modulo = 10000

def combine_spells(s1, s2):
 a1, b1, c1, d1 = s1
 a2, b2, c2, d2 = s2
 return (
 (a1 * a2 + c1 * b2) % modulo,
 (b1 * a2 + d1 * b2) % modulo,
 (a1 * c2 + c1 * d2) % modulo,
 (b1 * c2 + d1 * d2) % modulo)

def cast_spell(s, u, v):
 a, b, c, d = s
 return ((a * u + b * v) % modulo, (c * u + d * v) % modulo)

def spell_power(s, n):
 if n == 0:
 return (1, 0, 0, 1)
 r = spell_power(s, n//2)
 r = combine_spells(r, r)
 if n % 2 == 1:
 r = combine_spells(r, s)
 return r

s = tuple(map(int, input().strip().split()))
n = int(input())

u, v = cast_spell(spell_power(s, n), 1, 1)

print(u, v)

NZIC 2019 R1 Solutions © NZOI 2019

	Intro
	Easy Problems - Write-up
	Tea Party - Write-up
	Modern Art - Write-up
	Twilight Sparkle's Magical Research - Write-up

