Why did I score zero?

A guide to (some) common mistakes

New Zealand Olympiad in Informatics

There are many traps that might cause your submission to score zero. Don’t panic — it
might be something very simple! Below are the most common reasons we’ve seen.

Before you begin:

We assume that you’ve already tested your program with the sample input, and that
your program seems to work on those. If you have not, make sure to always test
with the sample before submitting! It’s much easier to debug your program
on your computer first than to submit and figure out what’s gone wrong later.

If you're confused about what the verdict your submission got means (e.g. Wrong
Answer, Fatal Signal, Runtime Error), see this document first.

1 Input/Output format

Every submission you make to our judging server is judged by a computer. This means
that you will be taking in input and writing output in a very specific format defined in
the problem statement. If your program does not handle input/output in exactly the
same format described in the problem statement, then the computer judging your code
will not understand it. It is unlikely you will get any marks if this happens.

One common trap is the use of input prompts, such as passing a string argument to
Python’s input () function. For more information on this, see this document. Remember
that you are writing your program for a computer, not a human, to use!

Another common trap is printing strings (such as a sentence) with very subtle differences
to the expected output format. This can include:

e Missing or extra full stops:
Actual Output Size: 16 Bytes  Expected Output Size: 15 Bytes

1 Greetings NZIC. “ 1 Greetings NZIC

e Extra whitespace (note the extra space between ‘Greetings’ and ‘NZIC’):
Actual Output Size: 16 Bytes  Expected Output Size: 15 Bytes

1 Greetings NZIC H 1 Greetings NZIC

e Misspellings:
Actual Output Size: 14 Bytes  Expected Output Size: 15 Bytes

1 Grettins NZIC H 1 Greetings NZIC

1 © NZOI 2021


http://www.nzoi.org.nz/nzic/resources/understanding-judge-feedback.pdf
http://www.nzoi.org.nz/nzic/resources/how-judging-works-python3.pdf

These can all lead to situations where it looks like your code is giving the correct answers,
but in fact is giving a slightly different (and incorrect) answer. Check the output your
code gives for the sample inputs, compare it to the expected output, and make sure they’re
actually the same.

2 Submitting the wrong language

This one’s pretty straight-forward — make sure you selected the language your program is
in. Also make sure that your program can run in the version of the language you selected.
We try to support relatively up-to-date version of languages, but we don’t guarantee that
we have the latest version of every language. It might be that your program uses new
features that were released after the version we have.

3 Language-specific traps

There may be details specific to your language that are causing issues. For example, Java
submissions must have a class named Main that contains a static method main. Check
out this problem set and open the problem for your language of choice for more specific
instructions.

4 Undefined Behaviour

Though rare, it is possible that you’ve come across a case where your code works for the
sample input on your computer, but fails on the same sample input when you submit to
the server. For example, the output on your computer is:

But the output on the server is:

Actual Output Size: 11 Bytes  Expected Output Size: 3 Bytes

1 1923812148 H 1017

This is most likely to happen if you program in C or C++, which both leave many
opportunities to cause undefined behaviour. Undefined behaviour occurs when your
program has behaviour that is unpredictable — that can vary between different computers,
compilers, or executions of the program. Thus, while your program may happen to work
well on your machine, it fails on our judging server.

This could have occurred in a variety of ways — most commonly, using variables before
they are initialized, or accessing out-of-bounds memory (such as indexing past the end of
an array). Check that all your variables are initialized — including values in arrays — and
check all the places you try to index an array.

For example, note the following C++ code, which takes in two number as input and
outputs their sum:

2 © NZOI 2021


https://train.nzoi.org.nz/problem_sets/399

int main() {
int a, b, c;

cin >> a >> b;

int sum =a + b + c;
cout << sum << endl;

Notice that the variables a, b and ¢ are not initialized - that is, we declare them without
setting an initial value. a and b are later assigned values by cin, but c is never assigned
a value. So what’s the value of c?

It depends - this is undefined behaviour! Depending on the specifics of the computer,
operating system, and even what other programs are running at the same time, it will
vary. If you get 'lucky’ and ¢ happens to be 0 on your computer, then the output will be
correct. But if, on the judging server, c happens to be a random value such as 1923012131,
then you will get garbage output.

In general, it is good practice to always specify an initial value for your variables (e.g.
int a=0, b=0, c=0; Failing that, you should always make sure that every variable you
use always gets assigned a value before you use it.

Different output on the server compared to your machine, especially if the output seems
random /garbage, is a telltale sign of undefined behaviour. Another possible sign of un-
defined behaviour in C and C++ is a fatal signal:

Input Size: 10 Bytes  Actual Output Size: 0 Bytes  Expected Qutput Size: 2 Bytes

11180 111

This is an even more extreme version of undefined behaviour, where the same code 'works’
on one computer but actually crashes on another! Most commonly, this is caused by
accessing an array with an out-of-bounds index.

5 Bugs or an incorrect approach

Unfortunately, it could be that your solution has the correct approach but contains some
bugs, or that your approach to the problem is incorrect. Try to come up with your own
test cases and see if your program passes those. Think of potential edge cases — what
are the most extreme examples of test cases you can think of? Make sure you read the
problem very carefully, in case there was some requirement you missed.

6 We made a mistake

In some rare cases, the problem statement or test data might contain errors. If you're
completely stuck on a problem and you don’t think it’s the fault of your program, you

3 © NZOI 2021



can contact us at nzic@nzoi.org.nz.

4 © NZOI 2021


mailto:nzic@nzoi.org.nz

	Input/Output format
	Submitting the wrong language
	Language-specific traps
	Undefined Behaviour
	Bugs or an incorrect approach
	We made a mistake

