
April 29, 2023

New Zealand Informatics Competition 2023
Round One

Editorial by Bruce C, Jonathon S, Anatol C, Phoebe Z, Zalan V

1

Contents
Introduction ... 2
Resources .. 2
Inventory Management ... 3
Repdigits ... 5
Emma's Switches ... 8
Sunsprint ... 11
Additional Example Solutions ... 13
Big O Complexity ... 20

Introduction
e solutions to this round of NZIC problems are discussed in detail below. In a few questions we
may refer to the Big O complexity of a solution, e.g. 𝑂(𝑁). ere is an explanation of Big O
complexity at the end of this document.

Resources
Ever wondered what the error messages mean?

hps://www.nzoi.org.nz/nzic/resources/understanding-judge-feedback.pdf

Read about how the server marking works:

hps://www.nzoi.org.nz/nzic/resources/how-judging-works-python3.pdf

Ever wondered why your submission scored zero?

hps://www.nzoi.org.nz/nzic/resources/why-did-i-score-zero.pdf

See our list of other useful resources here:

hps://www.nzoi.org.nz/nzic/resources

2

https://www.nzoi.org.nz/nzic/resources/understanding-judge-feedback.pdf
https://www.nzoi.org.nz/nzic/resources/how-judging-works-python3.pdf
https://www.nzoi.org.nz/nzic/resources/why-did-i-score-zero.pdf
https://www.nzoi.org.nz/nzic/resources

Inventory Management
Problem authored by Jonathan Khoo
hps://train.nzoi.org.nz/problems/1314

Subtask 1
e problem asks us to find an optimal subset of knives such the sum of the 𝑑 values of those knives
is maximised. Since 𝐾 = 1, we can only choose 1 knife, so it follows that we should choose the knife
with the maximum 𝑑 value. is can be done by iterating through the list of 𝑑 values and finding the
maximum one, or simply using the max() function in Python.

Python Solution
N, K = list(map(int, input().split()))
d = list(map(int, input().split()))
print(max(d))

Subtask 2
𝑁, 𝐾 ≤ 1000, so a brute force solution with time complexity 𝑂(𝑁𝐾) will pass. Firstly, we can make
the observation that the optimal subset of knives will always contain the 𝐾 knives with the largest 𝑑
values, because if we ever have a 𝑑 value that is not one of the 𝐾 largest 𝑑 values, we can swap it for
one of the 𝐾 largest 𝑑 values. erefore, it suffices to maintain a list of currently available 𝑑 values
and perform 𝐾 iterations, where in each iteration we find maximum 𝑑 value in the current list, add it
to the total sum and delete it from the list. Our answer is the total sum aer 𝐾 iterations. Since there
are 𝐾 iterations and each iteration runs in linear time on the list of 𝑑 values, the total time complexity
is 𝑂(𝑁𝐾).

Python Solution
N, K = list(map(int, input().split()))
d = list(map(int, input().split()))

res = 0
for i in range(K):
 cur = max(d)
 res += cur
 d.remove(cur)

print(res)

Subtask 3
𝑁, 𝐾 ≤ 100000 here, so the solution to subtask 2 will not pass within the time limit. However, we can
use the same observation from subtask 2 to reach the full solution. Instead of finding the maximum
𝑑 for 𝐾 iterations, we can sort the list in non-increasing order and calculate the sum of the first 𝐾
elements of the sorted list to achieve the same answer. is can be accomplished with Python’s built-
in sort() function which runs in 𝑂(𝑁 log 𝑁). Since we only need to go through the first 𝐾 elements
aer the list is sorted, the total time complexity is 𝑂(𝑁 log 𝑁) which will obtain the full score.

Python Solution
N, K = list(map(int, input().split()))
d = list(map(int, input().split()))

res = 0
d.sort(reverse=True)

3

https://train.nzoi.org.nz/problems/1314

for i in range(K):
 res += d[i]

print(res)

4

Repdigits
Problem authored by Jonathan Khoo
hps://train.nzoi.org.nz/problems/1308

Note that the model subtask solutions shown here may only solve the one specific subtask. In order to
obtain points for multiple subtasks you may need to integrate solutions for several subtasks into one
submission on the NZIC contest website.

Subtask 1
For this subtask we have 𝑁 ≤ 45. is bound may seem strange at first but 45 is actually equal to the
sum of all the integers from one through to nine (which are all repdigits) and in fact, all the integers
from 1 to 45 can be represented as a sum of distinct numbers between one and nine. From this, there
are a few ways to go about programming a solution.

One way is to simply always take the largest number between one and nine that is still valid until
everything you have selected adds up to the target number. is will always work and you can easily
verify this for all values up to 45 by simply running your program on all those numbers.

Python Solution
N = int(input())

current_total = 0
values = []

while current_total != N:
 for i in range(9, 0, -1):
 if i not in values and current_total + i <= N:
 values.append(i)
 current_total += i

print(len(values))

for val in values:
 print(val)

Extra Challenge
As an extra challenge, you may want to try find why this shorter and faster python code does effec-
tively the same thing as the one above.

N = int(input())

values = []

for i in range(9, 0, -1):
 if i <= N:
 values.append(i)
 N -= i

print(len(values))

for val in values:
 print(val)

5

https://train.nzoi.org.nz/problems/1308

Subtask 2
We can generalise the solution in the previous subtask to work for numbers which need larger repdig-
its in their decomposition. If instead of just taking the largest number between 1 and 9 at each step we
take the largest repdigit, then we always arrive at a valid solution. A proof is provided at the end of
this section.

Since in this subtask 𝑁 ≤ 105, to find the largest repdigit we can use, we can do this naively in 𝑂(𝑁)
time.

e overall complexity of the solution below is 𝑂(𝑁).

Python Solution
e code for this solution can be found at the end of this document.

Extra Challenge (Advanced)
If you know Dynamic Programming, try to solve this subtask while minimizing the number of repdig-
its used in your solution (you may find the solutions for the next subtasks helpful).

Subtask 3
In this subtask, 𝑁 can be represented as a sum of exactly 2 distinct repdigits. erefore, if we had a list
of all the repdigits ≤ 𝑁 , we can just check every repdigit and see if subtracting it from N yields another
(different) repdigit in which case we have found a solution. is works because there are actually very
few repdigits we would ever need to check (in fact there are exactly 81).

Since 𝑁 ≤ 109, to generate this list, we cannot just go through every number up to 𝑁 and check if it
is a repdigit as this would be 𝑂(𝑁). Instead we need a smarter way to generate repdigits. One way (of
many) is presented below.

Generating Repdigits
Note that all the repdigits with 𝑥 digits (where 𝑥 can be any natural number) are a multiple of the
number made of 𝑥 ones. For example, 4444 is a repdigit and is a multiple of 1111.

So, to generate all repdigits, we can generate all the numbers made of ones (1, 11, 111, …) and multiply
them by all numbers between one and nine to get all repdigits with the same number of digits as them.

Conveniently, we can get from one of these “one numbers” to the next by the formula 10 × 𝑥 + 1. For
example, to get the one aer 1111, we do 10 × 1111 + 1 = 11111. Generating all repdigits up to 109

can be done with the following code (be careful that naively implementing this in C++ may result in
integer overflow):

repdigits = []
x = 1

while x <= 1000000000:
 for i in range(1, 10):
 repdigits.append(x * i)
 x = 10 * x + 1

Python Solution
e code for this solution can be found at the end of this document.

Subtask 4
To solve the full problem, we can combine the ideas in the solutions for Subtask 2 and 3. We will use
the same sort of greedy algorithm as in Subtask 2 except that instead of finding each next repdigit in

6

O(N), we can simply pregenerate a list of all the repdigits similar to Subtask 3. is runs in 𝑂(log 𝑁)
overall (given in proof of correctness below).

Python Solution
e code for this solution can be found at the end of this document.

C++ Solution
e code for this solution can be found at the end of this document.

Proof of Correctness & Time Complexity
In informatics, it is oen not necessary to mathematically prove correctness as long as you can con-
vince yourself (and the testcases) that your solution works. However, we will do so here for your
understanding.

To prove the correctness of the greedy algorithm in Subtasks 2 & 4, it suffices to show that for any
repdigit 𝐴, there is another repdigit 𝐵 such that 𝐴 < 𝐵 ≤ 2𝐴.

is is quite easy to demonstrate. If we have a repdigit 𝐴 made of any digit 𝐷 that isn’t a nine, the
next repdigit 𝐵 is the one with digits 𝐷 + 1. e quotient of these two repdigits is simply 𝐷+1

𝐷 which
for any natural number 𝐷 is at most 2 and so 𝐴 < 𝐵 ≤ 2𝐴.

If 𝐴 consists of 𝑘 nines, the next repdigit 𝐵 is the one made of 𝑘 + 1 ones. e double of 𝐴 will at
least start with the numbers 18 and will have the same number of digits as 𝐵. us it is clear that
𝐴 < 𝐵 ≤ 2𝐴.

Since this is true, then if for a certain 𝑁 we have found the largest repdigit 𝐶 , we are guaranteed that
2𝐶 > 𝑁 which means that the number we get from subtracting 𝐶 , is strictly less than 𝐶 .

2𝐶 > 𝑁
2𝐶 − 𝐶 > 𝑁 − 𝐶

𝐶 > 𝑁 − 𝐶

is means that our algorithm will never need to subtract 𝐶 a second time (since it can’t) and so the
solution will never contain the same repdigit twice. erefore, any solution it generates will be valid.

On top of that, for any natural number 𝑁 , there will always be a repdigit ≤ 𝑁 because the number
one is a repdigit. As such, our algorithm can find a solution for any number 𝑁 .

For the time complexity, the first step in our algorithm is finding all repdigits ≤ 𝑁 , for any number of
digits there are exactly nine repdigits so the total number of repdigits is proportional to the number
of digits in 𝑁 . erefore, it takes 𝑂(log 𝑁) time to find the repdigits.

Next, at every step of our greedy algorithm we at least half our value of 𝑁 and so we will do 𝑂(log 𝑁)
steps each of which take 𝑂(1) resulting in overall 𝑂(log 𝑁) time complexity for this step.

Both steps take 𝑂(log 𝑁) so overall complexity is 𝑂(log 𝑁).

7

Emma's Switches
Problem authored by Bruce Chen
hps://train.nzoi.org.nz/problems/1311

Note that the model subtask solutions shown here only solve the one specific subtask. In order to
obtain points for multiple subtasks you may need to integrate solutions for several subtasks into one
submission on the NZIC contest website.

Subtask 1
𝑁 and 𝐷 are small, so a brute-force approach which simply simulates the actions of Emma should pass
within the time and memory constraints. is approach has a time complexity of 𝑂(𝑁 × 𝐷).

Python Solution
N, D = map(int, input().split())

switches = [False] * N

for j in range(D):
 k, p = map(int, input().split())
 for i in range(k-1, N, p):
 switches[i] = not switches[i]

for s in switches:
 print("ON" if s else "OFF")

Subtask 2
𝑁 and 𝐷 can now be large (up to 50,000), so the brute-force approach no longer works. In the worst
case, 𝑁 × 𝐷 = 2.5 billion operations which is far too many for the 1 second time limit.

An important observation to make is that as long as each switch is toggled the same number of times
in total, their final states will be the same. is means that the ordering of the days does not maer.
For example, the sample input of:

5 2
1 2
2 3

gives the exact same output as

5 2
2 3
1 2

e second thing to notice is that given 𝑘𝑖 = 1 and 1 ≤ 𝑝𝑖 ≤ 50 in this subtask, there are only 50 dis-
tinct ways in which Emma can toggle the switches each day. erefore, we can rearrange and group
the days by their 𝑝𝑖 values to reduce the number of operations.

To do so, we keep a tally for how many times each of the 50 distinct 𝑝𝑖 values appear across all days.
en, for each distinct 𝑝𝑖 value, we will sweep across all light switches and add the tally of 𝑝𝑖 to every
𝑝𝑖-th switch. We complete one last iteration through all the light switches; if the light switch has been
toggled an odd number of times, output ON. Otherwise, output OFF. is has a time complexity of
𝑂ᘭ𝑝max × 𝑁

𝑝avg
ᘮ. If we assume that in the worst case 𝑝avg ≈ 1 then the complexity becomes 𝑂ᘁ𝑝max𝑁ᘂ,

which is still sufficient.

8

https://train.nzoi.org.nz/problems/1311

Python Solution
N, D = map(int, input().split())
s = [0] * N
ps = [0] * 51
for x in range(D):
 k, p = map(int, input().split())
 ps[p] += 1

for p in range(1, 51):
 for x in range(0, N, p):
 s[x] += ps[p]

for x in s:
 print("ON" if x % 2 == 1 else "OFF")

Subtask 3
e same observations from subtask 2 will help us here. Given 1 ≤ 𝑘𝑖 ≤ 𝑁 , there are only 𝑁 distinct
ways for Emma to toggle the light switches each day, so we can instead group the days by their distinct
𝑘𝑖 values. For each distinct 𝑘𝑖 value, we tally up the number of days with that 𝑘𝑖 value.

We then iterate across all light switches, incrementing the number of toggles by the number of days
with that 𝑘𝑖 value as we go across. Same as before, output ON if the total number of toggles for a switch
is odd.

is has a time complexity of 𝑂(𝑁).

Python Solution
N, D = map(int, input().split())
s = [0] * N
for x in range(D):
 k, p = map(int, input().split())
 s[k-1] += 1

toggles = 0
for x in range(0, N):
 toggles += s[x]
 print("ON" if toggles % 2 == 1 else "OFF")

Subtask 4
We can combine the approaches of subtask 2 and subtask 3 together to obtain the full solution. We can
try to group the days by their 𝑝𝑖 value as we did in subtask 2, but this doesn’t immediately work. As 𝑘𝑖
is no longer constrained to 1, days with the same separator (𝑝𝑖) value but different 𝑘𝑖 value can be out
of “phase” with one another. Instead, we can group the days by both its 𝑝𝑖 value and also its “phase”
value (defined as 𝑘𝑖 mod 𝑝𝑖).

Again, there are only 50 distinct 𝑝 values, and for each there are 𝑝 possible “phases”, so the total num-
ber of groups would be:

ᜱ 𝑝 = 1 + 2 + … + 50 = 50ᙙ
1 + 50

2
ᙚ = 1275

For each group, we need to sweep across the light switches in a similar fashion to the solution of sub-
task 3, incrementing a counter with any new days in that group along the way. At first this might seem
like 𝑂(number of groups × 𝑛) = 𝑂(1275𝑛), but it is important to remember that all groups with a
given 𝑝 separator value only needs to iterate through 𝑁𝑝 switches. erefore, across the 𝑝 groups which

9

have the same separator value but different phase values the number of elements accessed totals to
𝑝 × 𝑁

𝑝 = 𝑁 . As there are 50 distinct separator values, the complexity of this solution is overall 𝑂(50𝑛).

Python Solution
e code for this solution can be found at the end of this document.

C++ Solution
e code for this solution can be found at the end of this document.

Checking your understanding
How would you modify the solution if the problem was extended so that for each day you’re given
an additional integer 𝑚𝑖, the maximum number of light switches that Emma toggles in a day before
stopping?

Up for more of a challenge?
Try out the problem Emma's Switches 2. Make sure you fully understand the complexities of all sub-
task solutions of the original problem first.

10

https://train.nzoi.org.nz/problems/1316

Sunsprint
Problem authored by Joseph Grace
hps://train.nzoi.org.nz/problems/1307

Subtasks 1 & 2
Since 𝑇 = 0, you will accumulate the same amount of exposure for every second spent in the sunlight.
us, the problem becomes finding the path from rest stop 0 to rest stop 𝑁 − 1 which minimises the
amount of time spent in unshaded paths. Some readers will note that we can use Dijkstra's algorithm to
solve this, however we will explore a different method which we will extend to solve the full problem.

We are guaranteed that the graph is a DAG (Directed Acyclic Graph) as each of the paths are one way
and it is not possible to visit the same rest stop twice. us we can use a technique called DP (Dynamic
Programming) on a DAG. We visit all nodes using a depth-first traversal, and calculate the minimum
amount of exposure that we need to get from a given rest stop to rest stop 𝑁 − 1. What we make sure
is that we only calculate the minimum exposure for each rest stop once and traverse each edge exactly
once. is makes the complexity of this solution 𝑂(𝑁 + 𝑀).

Python Solution
e code for this solution can be found at the end of this document.

Subtask 4
In this subtask, we are guaranteed that the paths form a line, and therefore there is only one unique
sequence of paths from rest stop 0 to rest stop 𝑁 − 1. is simplifies our decision making at each
rest stop. Instead of also considering which path to take next, we only need to consider whether to
cross the next path now, or wait until the intensity lessens. We can solve this with another appli-
cation of dynamic programming. If we are at rest stop 𝑣 at the 𝑡-th second and it takes 𝑑 seconds
to travel to the next rest stop, we can either travel to the next rest stop now, which would accumu-
late sunlight intensities 𝑠𝑡 + 𝑠𝑡+1 + … + 𝑠𝑡+𝑑−1, or wait until the 𝑡 + 1-th second. To minimise sun
exposure, we simply take the minimum of these two choices. In other words, if we let 𝑑𝑝𝑣,𝑡 be the
minimum sun exposure required to reach rest stop 𝑁 − 1 starting at rest stop 𝑣 at the 𝑡-th second, then
𝑑𝑝𝑣,𝑡 = minᘭ𝑑𝑝𝑣,𝑡+1, 𝑑𝑝𝑣+1,𝑡+𝑑 + ∑𝑡+𝑑−1

𝑘=𝑡 𝑠𝑘ᘮ. As there are only 𝑁 rest stops and 𝑇 starting times for
each rest stop that give distinct values, we can store the previously computed 𝑑𝑝𝑣,𝑡 values. In total,
there are 𝑁 × 𝑇 𝑑𝑝 values we need to calculate, giving our algorithm an 𝑂(𝑁𝑇) complexity.

C++ Solution
e code for this solution can be found at the end of this document.

Subtasks 3 & 5
For subtasks 3 and 5, we are no longer guaranteed that there is one unique sequence of paths from
rest stop 0 to rest stop 𝑁 − 1, so we will also need to consider which path to take next. However we
can extend our solution for subtask 4 for a general graph using similar ideas. Whereas previously we
only considered whether to traverse the next path now or wait until the next second, now we must
also consider which path to take if we choose to move to the next rest stop. Just like above, we will
choose the minimum out of all these options to build our optimal solution. Our DP recurrence is now:

𝑑𝑝𝑣,𝑡 = min
⎩ᙻ
⎨
ᙻ⎧𝑑𝑝𝑣,𝑡+1, min

𝑖∈𝑎𝑑𝑗𝑣⎝
⎜⎛𝑑𝑝𝑏𝑖,𝑡+𝑑𝑖

+ ᜱ
𝑡+𝑑𝑖−1

𝑘=𝑡
𝑠𝑘

⎠
⎟⎞

⎭ᙼ
⎬
ᙼ⎫

11

https://train.nzoi.org.nz/problems/1307
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://en.wikipedia.org/wiki/Depth-first_search

Where 𝑎𝑑𝑗𝑣 is the set of paths going out from rest stop 𝑣, 𝑏𝑖 is the endpoint of the 𝑖-th path and 𝑑𝑖 is
the length of the 𝑖-th path.

Note that if 𝑡 ≥ 𝑇 , since the brightness of the sun stops changing, it is no longer ever necessary to
stop at on of the shaded spots. On top of that, it does not maer what the value of 𝑡 actually is, since
now that 𝑡 ≥ 𝑇 , we will always get the same sequence of sunlight no maer the actual time. We can
write this as:

𝑑𝑝𝑣,𝑡 = 𝑑𝑝𝑣,𝑇 if 𝑡 ≥ 𝑇

And, because we no longer stop at shaded spots and 𝑠𝑖 is constant, we get the simpler dp recurrence:

𝑑𝑝𝑣,𝑇 = min
𝑖∈𝑎𝑑𝑗𝑣

ᘭ𝑑𝑝𝑏𝑖,𝑇
+ 𝑑𝑖𝐼ᘮ

As in each 𝑑𝑝𝑣,𝑡 we need to consider each path directly connected to 𝑣, as well as summing the sun
intensity for each path length, our time complexity comes to 𝑂((𝑁 + 𝑀)𝑇𝐷), where 𝐷 is the maxi-
mum of all 𝑑 values. is is sufficient to pass subtask 3 and 5 as 𝑑 is at most 3 in both subtasks for all
paths.

C++ Solution
e code for this solution can be found at the end of this document.

Subtask 6
For subtask 6, 𝑑 is no longer constrained and can be up to 500 so our solution from above will be
too slow. To speed this up, we can use a precomputated prefix sum to quickly calculated the sum of
sunlight intensities accumulated for each path in our DP. A prefix sum of an array stores the sum of
its elements from 1 to 𝑘 at index 𝑘. In other words, for an array 𝑎, its prefix will store 𝑎1 at index 1,
𝑎1 + 𝑎2 at index 2, 𝑎1 + 𝑎2 + 𝑎3 at index 3 and so on. is structure allows us to calculate a subarray
sum in constant time aer an 𝑂(𝑁) precomputation; to calculate for ∑𝑅

𝑖=𝐿 𝑎𝑖, we can simply take
prefix[𝑅] − prefix[𝐿 − 1]. is reduces our time complexity down to 𝑂((𝑁 + 𝑀)𝑇), which is suffi-
cient to solve the full problem.

C++ Solution
e code for this solution can be found at the end of this document.

12

Additional Example Solutions
Repdigits Subtask 2 Python Solution
N = int(input())

def is_repdigit(n):
 s = str(n)

 for i in range(1, len(s)):
 if s[i] != s[0]:
 return False

 return True

def find_repdigit(n):
 while not is_repdigit(n):
 n -= 1
 return n

values = []

while N > 0:
 next_val = find_repdigit(N)
 values.append(next_val)
 N -= next_val

print(len(values))

for val in values:
 print(val)

Repdigits Subtask 3 Python Solution
import sys

N = int(input())

def is_repdigit(n):
 s = str(n)

 for i in range(1, len(s)):
 if s[i] != s[0]:
 return False

 return True

x = 1
while x <= N:
 for i in range(1, 10):
 repdigit = x * i

 if repdigit <= N:
 res = N - repdigit
 if res != repdigit and is_repdigit(res):
 print(2)
 print(repdigit)
 print(res)

13

 sys.exit(0)
 x = 10 * x + 1

Repdigits Subtask 4 Python Solution
N = int(input())

repdigits = []
x = 1

while x <= N:
 for i in range(1, 10):
 repdigits.append(x * i)
 x = 10 * x + 1

values = []

for x in reversed(repdigits):
 if x <= N:
 values.append(x)
 N -= x

print(len(values))

for val in values:
 print(val)

Repdigits Subtask 4 C++ Solution
#include <bits/stdc++.h>

using namespace std;

int main() {
 int N;
 cin >> N;

 vector<int> repdigits;
 long long x = 1;
 while (x <= N) {
 for (int i = 1; i <= 9; i++) {
 repdigits.push_back(x * i);
 }

 x = 10 * x + 1;
 }

 vector<int> values;

 for (int i = repdigits.size() - 1; i >= 0 && N > 0; i--) {
 if (repdigits[i] <= N) {
 values.push_back(repdigits[i]);
 N -= repdigits[i];
 }
 }

 cout << values.size() << endl;

14

 for (int x: values) {
 cout << x << endl;
 }
}

Emma's Switches Subtask 4 Python Solution
N, D = map(int, input().split())

switches = [0] * N
queries = [[0] * N for i in range(51)]

for i in range(D):
 k, p = map(int, input().split())
 queries[p][k-1] += 1

for p in range(1, 51):
 for s in range(p):
 count = 0
 for i in range(s, N, p):
 count += queries[p][i]
 switches[i] += count

for s in switches:
 print("ON" if s % 2 == 1 else "OFF")

Emma's Switches Subtask 4 C++ Solution
#include <bits/stdc++.h>
using namespace std;

int main() {
 cin.tie(0);
 ios_base::sync_with_stdio(0);

 int N, D;
 cin >> N >> D;
 vector<int> switches(N, 0);
 vector<vector<int>> queries(51, vector<int>(N, 0));
 for (int i = 0; i < D; i++) {
 int k, p;
 cin >> k >> p;
 queries[p][k-1]++;
 }

 for (int p = 1; p <= 50; ++p) {
 for (int s = 0; s < p; ++s) {
 int count = 0;
 for (int i = s; i < N; i += p) {
 count += queries[p][i];
 switches[i] += count;
 }
 }
 }

 for (int k : switches)
 cout << (k % 2 == 1 ? "ON\n" : "OFF\n");
}

15

Sunsprint Subtask 1 & 2 Python Solution
import sys
sys.setrecursionlimit(5000)

I, T = map(int, input().split())
input()
N, M = map(int, input().split())
adjacency = [[] for i in range(N)]
for i in range(M):
 line = input().split()
 a, b, d = map(int, line[:3])
 if line[3] == "S":
 d = 0
 adjacency[a].append((b, d))

distances = [-1 for i in range(N)]

def dfs(node, parent):
 min_dist = 10**9
 if node == N - 1:
 min_dist = 0
 for child, dist in adjacency[node]:
 if child == parent:
 continue
 if distances[child] == -1:
 dfs(child, node)
 min_dist = min(min_dist, distances[child] + dist)
 distances[node] = min_dist

dfs(0, -1)
print(distances[0] * I)

Sunsprint Subtask 4 C++ Solution
#include <bits/stdc++.h>

using namespace std;

int I, T, N, M;
int s[5000], d[5000], dp[2000][5001];
bool covered[5000];

int getCost(int path, int start) {
 if (covered[path]) return 0;
 int total = 0;
 for (int i = start; i < start + d[path]; i++) {
 if (i >= T) total += I;
 else total += s[i];
 }
 return total;
}

int solve(int node, int t) {
 if (t >= T) t = T;
 if (node == N - 1) return 0;
 if (dp[node][t] != -1) return dp[node][t];

16

 int res = getCost(node, t) + solve(node + 1, t + d[node]);
 if (t < T) res = min(res, solve(node, t + 1));

 return dp[node][t] = res;
}

signed main() {
 ios_base::sync_with_stdio(false);
 cin.tie(NULL);

 cin >> I >> T;

 for (int i = 0; i < T; i++) {
 cin >> s[i];
 }

 cin >> N >> M;

 for (int i = 0; i < M; i++) {
 int a, b;
 char c;
 cin >> a >> b;
 cin >> d[a] >> c;
 covered[a] = c == 'S';
 }

 memset(dp, -1, sizeof(dp));

 cout << solve(0, 0) << endl;
}

Sunsprint Subtask 3 & 5 C++ Solution
#include <bits/stdc++.h>
#define int long long

using namespace std;

int I, T, N, M;
int s[5010], d[5010], b[5010], dp[2010][5010];
bool covered[5010];
vector<int> adj[2010];

int getCost(int path, int start) {
 if (covered[path]) return 0;
 int total = 0;
 for (int i = start; i < start + d[path]; i++) {
 if (i >= T) total += I;
 else total += s[i];
 }
 return total;
}

int solve(int node, int t) {
 if (t >= T) t = T;
 if (node == N - 1) return 0;
 if (dp[node][t] != -1) return dp[node][t];

17

 int res = INT_MAX;

 for (int edge: adj[node]) {
 res = min(res, getCost(edge, t) + solve(b[edge], t + d[edge]));
 }

 if (t < T) {
 res = min(res, solve(node, t + 1));
 }

 return dp[node][t] = res;
}

signed main() {
 ios_base::sync_with_stdio(false);
 cin.tie(NULL);

 cin >> I >> T;

 for (int i = 0; i < T; i++) {
 cin >> s[i];
 }

 cin >> N >> M;

 for (int i = 0; i < M; i++) {
 int a;
 char c;
 cin >> a >> b[i] >> d[i] >> c;

 adj[a].push_back(i);
 covered[i] = c == 'S';
 }

 memset(dp, -1, sizeof(dp));

 cout << solve(0, 0) << endl;
}

Sunsprint Subtask 6 C++ Solution
#include <bits/stdc++.h>
using namespace std;

int I,T,N,M;
int intensities[5555];

struct Edge
{
 int dest;
 int length;
 bool shaded;
};
vector<vector<Edge>> adj;

int dp[10010][5010];

18

int rsq[5555];

int cost(int time, Edge& edge)
{
 return edge.shaded ? 0 : rsq[time + edge.length] - rsq[time];
}

int solve(int node, int time)
{
 time = min(time, T);
 auto& result = dp[node][time];
 if (result != -1)
 return result;
 if (node == N-1)
 return result = 0;

 result = time >= T ? INT_MAX / 2 : solve(node, time+1);
 for (Edge& edge : adj[node])
 result = min(result, solve(edge.dest, time + edge.length) + cost(time, edge));
 return result;
}

int main()
{
 cin >> I >> T;
 for (int i = 0; i < T; i++)
 cin >> intensities[i];
 for (int i = T; i < T+500; i++)
 intensities[i] = I;
 rsq[0] = 0;
 for (int i = 0; i < T+500; i++)
 rsq[i+1] = rsq[i] + intensities[i];

 cin >> N >> M;
 adj.resize(N);
 for (int i = 0; i < M; i++)
 {
 int a,b,d;
 char c;
 cin >> a >> b >> d >> c;
 adj[a].push_back({b, d, c == 'S'});
 }

 memset(dp, -1, sizeof(dp));
 cout << solve(0, 0);
}

19

Big O Complexity
Computer scientists like to compare programs using something called Big O notation. is works by
choosing a parameter, usually one of the inputs, and seeing what happens as this parameter increases
in value. For example, let’s say we have a list 𝑁 items long. We oen call the measured parameter 𝑁 .
For example, a list of length 𝑁 .

In contests, problems are oen designed with time or memory constraints to make you think of a more
efficient algorithm. You can estimate this based on the problem’s constraints. It’s oen reasonable to
assume a computer can perform around 100 million (100,000,000) operations per second. For exam-
ple, if the problem specifies a time limit of 1 second and an input of 𝑁 as large as 100,000, then you
know that an 𝑂ᘗ𝑁 2ᘘ algorithm might be too slow for large 𝑁 since 100,0002 = 10,000,000,000, or
10 billion operations.

Time Complexity
e time taken by a program can be estimated by the number of processor operations. For example,
an addition 𝑎 + 𝑏 or a comparison 𝑎 < 𝑏 is one operation.

𝑂(1) time means that the number of operations a computer performs does not increase as 𝑁 increases
(i.e. does not depend on 𝑁). For example, say you have a program containing a list of 𝑁 items and
want to access the item at the 𝑖-th index. Usually, the computer will simply access the corresponding
location in memory. ere might be a few calculations to work out which location in memory the
entry 𝑖 corresponds to, but these will take the same amount of computation regardless of 𝑁 . Note
that time complexity does not account for constant factors. For example, if we doubled the number of
calculations used to get each item in the list, the time complexity is still 𝑂(1) because it is the same
for all list lengths. You can’t get a beer algorithmic complexity than constant time.

𝑂(log 𝑁) time suggests the program takes a constant number of extra operations every time 𝑁 dou-
bles in size. For example, finding a number in a sorted list using binary search might take 3 operations
when 𝑁 = 8, but it will only take one extra operation if we double 𝑁 to 16. As far as efficiency goes,
this is prey good, since 𝑁 generally has to get very, very large before a computer starts to struggle.

𝑂(𝑁) time means you have an algorithm where the number of operations is directly proportional to
𝑁 . For example, a maximum finding algorithm max() will need to compare against every item in a
list of length 𝑁 to confirm you have indeed found the maximum. Usually, if you have one loop that
iterates 𝑁 times your algorithm is 𝑂(𝑁).

𝑂ᘗ𝑁 2ᘘ time means the number of operations is proportional to 𝑁 2 . For example, suppose you had an
algorithm which compared every item in a list against every other item to find similar items. For a list
of 𝑁 items, each item has to check against the remaining 𝑁 − 1 items. In total, 𝑁(𝑁 − 1) checks are
done. is expands to 𝑁 2 − 𝑁 . For Big O, we always take the most significant term as the dominating
factor, which gives 𝑂ᘗ𝑁 2ᘘ. is is generally not great for large values of 𝑁 , which can take a very
long time to compute. As a general rule of thumb in contests, 𝑂ᘗ𝑁 2ᘘ algorithms are only useful for
input sizes of 𝑁 ≲ 10,000. Usually, if you have a nested loop in your program (loop inside a loop) then
your solution is 𝑂ᘗ𝑁 2ᘘ if both these loops run about 𝑁 times.

20

	Contents
	Introduction
	Resources
	Inventory Management
	Subtask 1
	Python Solution

	Subtask 2
	Python Solution

	Subtask 3
	Python Solution

	Repdigits
	Subtask 1
	Python Solution
	Extra Challenge

	Subtask 2
	Python Solution
	Extra Challenge (Advanced)

	Subtask 3
	Generating Repdigits
	Python Solution

	Subtask 4
	Python Solution
	C++ Solution

	Proof of Correctness & Time Complexity

	Emma's Switches
	Subtask 1
	Python Solution

	Subtask 2
	Python Solution

	Subtask 3
	Python Solution

	Subtask 4
	Python Solution
	C++ Solution

	Checking your understanding
	Up for more of a challenge?

	Sunsprint
	Subtasks 1 & 2
	Python Solution

	Subtask 4
	C++ Solution

	Subtasks 3 & 5
	C++ Solution

	Subtask 6
	C++ Solution

	Additional Example Solutions
	Repdigits Subtask 2 Python Solution
	Repdigits Subtask 3 Python Solution
	Repdigits Subtask 4 Python Solution
	Repdigits Subtask 4 C++ Solution
	Emma's Switches Subtask 4 Python Solution
	Emma's Switches Subtask 4 C++ Solution
	Sunsprint Subtask 1 & 2 Python Solution
	Sunsprint Subtask 4 C++ Solution
	Sunsprint Subtask 3 & 5 C++ Solution
	Sunsprint Subtask 6 C++ Solution

	Big O Complexity
	Time Complexity

