
New Zealand Informatics Competition 2021
Round 3 Solutions

July 19, 2021

Overview

Questions

1. Dorothy’s Red Shoes

2. Bulk Buying

3. KB Lo-Fi

4. Unofficial Contestants

5. Tim Jhomas Returns

The solutions to these questions are discussed in detail below. In a few questions
we may refer to the Big O complexity of a solution, e.g. O(N). There is an
explanation of Big O complexity at the end of this document.

Resources

Ever wondered what the error messages mean?

www.nzoi.org.nz/nzic/resources/understanding-judge-feedback.pdf

Read about how the server marking works:

www.nzoi.org.nz/nzic/resources/how-judging-works-python3.pdf

Ever wondered why your submission scored zero?

Why did I score zero? - some common mistakes

See our list of other useful resources here:

www.nzoi.org.nz/nzic/resources

1

https://www.nzoi.org.nz/nzic/resources/understanding-judge-feedback.pdf
https://www.nzoi.org.nz/nzic/resources/how-judging-works-python3.pdf
https://www.nzoi.org.nz/nzic/resources/why-did-i-score-zero.pdf
https://www.nzoi.org.nz/nzic/resources

NZIC 2021 Round 3 Solutions 2

Tips for next time

Remember, this is a contest. The only thing we care about is that your code runs.
It doesn’t need to be pretty or have comments. There is also no need to worry
about invalid input. Input will always be as described in the problem statement.
For example, the code below is not necessary.

1 # Not needed

2 def error_handling(prompt):

3 while True:

4 try:

5 N = int(input(prompt))

6 if N < 0 or N > 100:

7 print('That was not a valid integer!')

8 else:

9 return N

10 except ValueError:

11 print('Not a valid integer')

12 ...

There are a few other things students can do to improve their performance in
contests.

Practice getting input

A number of students tripped up on processing input with multiple integers on a
single line. A neat trick for processing this sort of input in Python is to use the
str.split() method and the map() function. The split() method will break up
a string at space characters, returning a list of the words. The map() function can
be used to apply int() to each string in this list, converting them to integers. For
example, suppose we have the following line of input:

1 4 2 7

We can turn this into a list of integers with the Python statement

my_ints = list(map(int, input().split()))

Notice that we used list(). This is because map() returns us a special generator
object, not a list. However, generator objects are easily converted to lists.

We suggest having a go at some of the NZIC Practice Problems.

© NZOI 2021

https://docs.python.org/3/library/stdtypes.html#str.split
https://docs.python.org/3/library/functions.html#map
https://docs.python.org/3/library/stdtypes.html#str.split
https://docs.python.org/3/library/functions.html#map
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#map
https://train.nzoi.org.nz/problem_sets/296

NZIC 2021 Round 3 Solutions 3

Move on to the next question

If you are spending too much time on a question, move on. There could be easy
subtasks waiting in the next question. Often, you will think of a solution to
your problem while working on another question. It also helps to come back to a
question with a fresh pair of eyes.

Take time to read the questions

Don’t underestimate the value of taking time to read and understand the question.
You will waste exponentially more time powering off thinking you have the solution
only to discover you missed something obvious.

In the real world, it is very rare to be provided with a problem in a simplistic
form. Part of the challenge with these contests is reading and understanding the
question, then figuring out what algorithm will be needed. Before submitting,
check to make sure you have done everything the question asks you to do.

Test your code first!

It is much more time efficient to test your solutions on your own computer first.
It can take a while to wait for the server to run your code. It is far more efficient
to test it yourself first, submit it, then start reading the next question while you
wait for your previous solution to be marked by the server.

While testing, remember to add some edge case tests. For example, if a question
specifies “1 ≤ N ≤ 10” then try out an input where N = 1. Think of other tricky
inputs that might break your code. Look at the feedback the server is giving
you.

Use a rubber duck

https://en.wikipedia.org/wiki/Rubber_duck_debugging

© NZOI 2021

https://en.wikipedia.org/wiki/Rubber_duck_debugging

Dorothy’s Red Shoes

To figure out if Dorothy is in the room we need to count how many red shoes there
are. In other words, the number of ‘R’s in the input string need to be counted. You
are assured that no one else would wear Red shoes, so the only possible counts are 0
(she’s missing), 1 (needs to find the other shoe) or 2 (she’s in the classroom).

Most languages has a built-in method to count the number of occurrences of a
character in a string. For example, counting can be achieved by using a string’s
.count() method in Python, or the count() function in C++.
Otherwise, keep a running total of ”R”s, initially set to 0. Then, iterate over the
string, adding 1 to the total if “R” is found.

All we then need to do is check if that number is 0, 1, or 2 and output the associated
message.

https://train.nzoi.org.nz/problems/1228

Python Solution

1 shoes_in = input()

2 num_red = shoes_in.count('R')

3

4 ''' If not using the count() method

5 num_red = 0

6 for shoe in range(shoes_in):

7 if shoe == 'R':

8 num_red += 1

9 '''

10

11 if num_red == 2:

12 print("Dorothy is in the classroom.")

13 elif num_red == 1:

14 print("Hop along Dorothy and find that other shoe.")

4

https://train.nzoi.org.nz/problems/1228

NZIC 2021 Round 3 Solutions 5

15 else:

16 print("Maybe Dorothy is in Kansas.")

C++ Solution

1 #include <bits/stdc++.h>

2

3 using namespace std;

4

5 int main() {

6 string shoes_string;

7 cin>>shoes_string;

8

9 int num_red = count(shoes_string.begin(), shoes_string.end(), 'R');

10

11 if (num_red == 2) {

12 cout<<"Dorothy is in the classroom."<<endl;

13 } else if (num_red == 1) {

14 cout<<"Hop along Dorothy and find that other shoe."<<endl;

15 } else {

16 cout<<"Maybe Dorothy is in Kansas."<<endl;

17 }

18 }

© NZOI 2021

Bulk Buying

https://train.nzoi.org.nz/problems/1232

Note: all solutions for this problem are in Python.

Subtask 1

If it costs $2 to buy 2 ducks and $3 to buy 3 ducks, then each duck always costs
$1. Therefore, the total cost of buying N ducks is always N dollars.

1 print(input())

Subtask 2

In this subtask, you can spend $3 to buy 2 ducks or $5 to buy 3 ducks. The first
method costs $3/2 = $1.50 per duck, and the second costs $5/3 ≈ $1.66 per duck,
so it is clearly better to use the first method as much as possible. The only cases
where we cannot buy all of our ducks in lots of 2 is when N is odd – then we
simply need to buy a single lot of 3 ducks to make the remaining N even.

1 N = int(input())

2 A = int(input())

3 B = int(input())

4

5 cost = 0

6 if N % 2 == 1: # If N is odd, buy a single lot of 3 ducks

7 N -= 3

8 cost += B

9 cost += N // 2 * A

10

11 print(cost)

6

https://train.nzoi.org.nz/problems/1232

NZIC 2021 Round 3 Solutions 7

Subtask 3

If A/2 < B/3, then it is more optimal to buy ducks in lots of 2, so we can use our
subtask 2 solution. Otherwise, if A/2 > B/3, it is better to buy ducks in lots of
3. But what should we do if N is not a multiple of 3?

Let r be the remainder of dividing N by 3.

• If r is 2, then we can get exactly N ducks by buying a single lot of 2 ducks,
and the rest in lots of 3.

• If r is 1, then it is optimal to buy two lots of 2 ducks (as 2 × 2 = 4, which
has a remainder of 1 when divided by 3), and the rest in lots of 3.

1 N = int(input())

2 A = int(input())

3 B = int(input())

4

5 cost = 0

6 if A / 2 <= B / 3: # Better to buy lots of 2

7 if N % 2 == 1: # If N is odd, buy one lot of 3 ducks

8 N -= 3

9 cost += B

10 cost += N // 2 * A

11 else: # Better to buy lots of 3

12 if N % 3 == 1: # If remainder is 1, buy two lots of 2 ducks

13 N -= 4

14 cost += 2 * A

15 elif N % 3 == 2: # If remainder is 2, buy one lot of 2 ducks

16 N -= 2

17 cost += A

18 cost += N // 3 * B

19

20 print(cost)

© NZOI 2021

NZIC 2021 Round 3 Solutions 8

Alternative solutions

We could instead take a brute-force approach, iterating over every possible value
for the number of lots of 2 we should buy, and determining how many lots of 3 we
would need to make up the rest.

1 N = int(input())

2 A = int(input())

3 B = int(input())

4

5 cost = 10**10

6 for x in range(N // 2 + 1):

7 required = N - x * 2 # Ducks needed if we buy x lots of 2

8 if required % 3 > 0:

9 continue

10 y = required // 3 # Buy y lots of 3 ducks to make N

11 cost = min(cost, x * A + y * B)

12

13 print(cost)

Or we could use dynamic programming to calculate the cost of buying every num-
ber of ducks up to N in a single for-loop.

1 N = int(input())

2 A = int(input())

3 B = int(input())

4

5 cost = [0] * (N + 1)

6 cost[1] = 10**10 # Impossible to buy just 1 duck

7 cost[2] = A # Always costs A to buy 2 ducks

8

9 for x in range(3, N + 1):

10 # The cost of buying x ducks is the minimum of:

11 # the cost of buying x - 2 ducks, plus A

12 # the cost of buying x - 3 ducks, plus B

13 cost[x] = min(cost[x - 2] + A, cost[x - 3] + B)

14

15 print(cost[N])

© NZOI 2021

https://en.wikipedia.org/wiki/Dynamic_programming

KB Lo-Fi

https://train.nzoi.org.nz/problems/1225

Subtask 1

When there’s only one customer, we might as well sell them the most expensive
phone they could possibly buy. We will keep track of the current ’best’ phone in
a variable, and loop through all available phones. If we see a phone that is more
expensive (but that the customer can still buy), then we update that variable.

Python Subtask 1 Solution

1 n = int(input())

2

3 customer = int(input())

4

5 m = int(input())

6

7 best_phone = 0

8

9 for i in range(m):

10 phone = int(input())

11 if phone <= customer and phone > best_phone:

12 best_phone = phone

13

14 print(best_phone)

C++ Subtask 1 Solution

1 #include <bits/stdc++.h>

2

9

https://train.nzoi.org.nz/problems/1225

NZIC 2021 Round 3 Solutions 10

3 using namespace std;

4

5 int main() {

6 int n, m, customer, phone;

7

8 cin>>n>>customer>>m;

9

10 int best_phone = 0;

11 for (int i=0; i<m; i++) {

12 cin>>phone;

13 if (phone <= customer && phone > best_phone) {

14 best_phone = phone;

15 }

16 }

17

18 cout<<best_phone<<endl;

19 }

Subtask 2

Note: This subtask turned out to be a bit harder than we intended, so don’t feel
bad if you don’t fully understand the solution. Recursion is a hard idea to grasp
your head around! The solutions to later subtasks don’t rely on this subtask.

Because there’s only a smaller number of customers and phones, we can try every
possible assignment of customers to phones. For the first customer, we will try
every possible phone that can be assigned to that customer. For each of those
assignments, we will then try every remaining phone that can be assigned to the
second customer, and so on. This gives us a recursive solution to the problem,
where the solution to the problem (best assignment of M phones to N customers)
relies on the solutions to smaller versions of the problem (best assignment of M−1
phones to N − 1 customers). This solution is similar in spirit to the recursive
solution to finding all permutations of a list of items.

Python Subtask 2 Solution

1 def solve(customers, phones):

2 maximum = 0

3 if len(customers) == 0 or len(phones) == 0:

4 return 0

5 for i in range(len(phones)):

6 if phones[i] <= customers[0]:

© NZOI 2021

https://medium.com/@aberg2014/recursively-generating-string-permutations-381b4ad9588

NZIC 2021 Round 3 Solutions 11

7 maximum = max(maximum, phones[i] + solve(customers[1:],

phones[:i] + phones[i+1:]))↪→

8 maximum = max(maximum, solve(customers[1:], phones))

9 return maximum

10

11 n = int(input())

12 customers = []

13 for i in range(n):

14 customers.append(int(input()))

15

16 m = int(input())

17

18 phones = []

19 for i in range(m):

20 phones.append(int(input()))

21

22 print(solve(customers, phones))

C++ Subtask 2 Solution

1 #include <bits/stdc++.h>

2

3 using namespace std;

4

5 long solve(vector<int> &customers, vector<int> phones, int

current_customer = 0) {↪→

6 long maximum = 0;

7 if (current_customer == customers.size() || phones.size() == 0) {

8 return 0;

9 }

10

11 for (int i = 0; i < phones.size(); i++) {

12 if (phones[i] <= customers[current_customer]) {

13 vector<int> phones_remaining = vector<int>(phones);

14 phones_remaining.erase(phones_remaining.begin() + i); //

Get all unsold phones by removing the current phone↪→

15

16 maximum = max(maximum, phones[i] + solve(customers,

phones_remaining, current_customer + 1));↪→

17 }

18 }

© NZOI 2021

NZIC 2021 Round 3 Solutions 12

19 maximum = max(maximum, solve(customers, phones, current_customer +

1)); // Include the case where we don't sell any phones to this

customer

↪→

↪→

20

21 return maximum;

22 }

23

24 int main() {

25 int n, m, customer, phone;

26

27 vector<int> customers, phones;

28

29 cin>>n;

30 for (int i=0; i<n; i++) {

31 cin>>customer;

32 customers.push_back(customer);

33 }

34

35 cin>>m;

36 for (int i=0; i<m; i++) {

37 cin>>phone;

38 phones.push_back(phone);

39 }

40

41 cout<<solve(customers, phones)<<endl;

42 }

Subtask 3

Instead of trying to think about assigning the phones to all the customers, let’s
think back to Subtask 1, where we only had to worry about one customer. If we
wanted to sell a phone to the customer with the highest bid (who we will call
c1), which phone should it be? Intuitively, it should be the most expensive phone
they can buy (which we shall call p1)! But if we sell p1 to c1, does it put us at a
disadvantage down the line?
No! Firstly, p1 is the most expensive phone that c1 can buy, so by definition, we
can’t possibly extract more money from c1. Could we make more money overall
by selling that phone to another customer? Also no!

Assume that the optimal solution involves selling p1 to another customer, c2. Then,
there are two cases:

© NZOI 2021

NZIC 2021 Round 3 Solutions 13

• Case 1: The optimal solution does not sell a phone to c1

• Case 2: The optimal solution involves selling another phone, p2, to c1

If Case 1 is true, then we can simply sell p1 to c1 instead of c2 and make the same
amount of money. If Case 2 is true, then we know that c2 must be able to buy
p2, as c2 can buy p1 and p2 ≤ p1 (remember, p1 is the most expensive phone we
can sell). Therefore, if we instead sold p1 to c1 and p2 to c2 we would make the
same amount of money. Therefore, it is always in our best interests to sell
the most expensive possible phone to the customer with the highest
bid.

We can continue to apply this logic to successive customers. In other words, we
will first want to sell the most expensive possible phone to the customer with
the highest bid. Then, we want to sell the most expensive possible remaining
phone to the customer with the next highest (or equal) bid. We can continue this
until we either run out of phones that can be sold, or have sold a phone to every
customer.

To implement this, we will sort in descending order the list of customer bids.
Then, for each bid we iterate through, we loop through the list of phone prices
and find the most expensive one we can sell to the current customer. We also need
to remember to remove each phone we sell from the list. With N total bids and
M total phones to loop through per bid, this algorithm has a time complexity of
O(N ∗M).

Python Subtask 3 Solution

1 n = int(input())

2

3 customers = []

4 for i in range(n):

5 customers.append(int(input()))

6 customers.sort(key=lambda x: -x)

7

8 m = int(input())

9

10 phones = []

11 for i in range(m):

12 phones.append(int(input()))

13

14 profit = 0

15

© NZOI 2021

NZIC 2021 Round 3 Solutions 14

16 for customer in customers:

17 best_phone = -1

18

19 for phone in phones:

20 if phone <= customer and phone > best_phone:

21 best_phone = phone

22

23 if best_phone != -1:

24 profit += best_phone

25 phones.remove(best_phone)

26

27 print(profit)

C++ Subtask 3 Solution

1 #include <bits/stdc++.h>

2

3 using namespace std;

4

5 int main() {

6 int n, m, customer, phone;

7 vector<int> customers, phones;

8

9 cin>>n;

10 for (int i=0; i<n; i++) {

11 cin>>customer;

12 customers.push_back(customer);

13 }

14 sort(customers.begin(), customers.end(), greater <>());

15

16 cin>>m;

17 for (int i=0; i<m; i++) {

18 cin>>phone;

19 phones.push_back(phone);

20 }

21

22 long long profit = 0;

23 for (auto customer: customers) {

24 int best_phone = -1;

25

26 for (auto phone: phones) {

27 if (phone <= customer && phone > best_phone) {

28 best_phone = phone;

© NZOI 2021

NZIC 2021 Round 3 Solutions 15

29 }

30 }

31

32 if (best_phone != -1) {

33 profit += best_phone;

34 phones.erase(find(phones.begin(), phones.end(),

best_phone)); // Delete the phone we just sold↪→

35 }

36 }

37 cout<<profit<<endl;

38 }

Subtask 4

Our Subtask 3 solution’s time complexity of O(N ∗M) is far too slow for the full
solution. Is there a way we can avoid having to iterate through all phones to find
the best for each customer?

Notice that we will always pick phones in descending order of price. This is because
we go through customers in descending order of bid, and will always pick the most
expensive phone for each customer. Therefore, to find the best phone for the
current customer, we don’t need to iterate through all phones - we only need
to iterate through all phones cheaper than the phone we picked for the previous
customer. Let’s sort the phones in descending order of price, and keep track of
the index of the previous phone. When we need to find the next best phone, we
just need to increment the index until we reach the first phone that our current
customer can buy.

This may not seem like that much of an improvement. In the worst case, for a
specific customer we could still end up iterating through the whole list of phones.
However, in total, for all customers, we will only iterate through each phone at
most once - we only ever increment the index, so there are only so many times we
can increment before we hit the end of the list! Therefore, the total complexity is
O(N + M).

Python Subtask 4 Solution

1 n = int(input())

2

3 customers = []

4 for i in range(n):

5 customers.append(int(input()))

© NZOI 2021

NZIC 2021 Round 3 Solutions 16

6 customers.sort(key=lambda x: -x)

7

8 m = int(input())

9

10 phones = []

11 for i in range(m):

12 phones.append(int(input()))

13 phones.sort(key=lambda x: -x)

14

15 profit = 0

16

17 best_phone_index = 0

18

19 for customer in customers:

20 while best_phone_index < len(phones) and phones[best_phone_index] >

customer:↪→

21 best_phone_index += 1

22

23 if best_phone_index >= len(phones):

24 break

25

26 profit += phones[best_phone_index]

27 best_phone_index += 1

28

29 print(profit)

C++ Subtask 4 Solution

1 #include <bits/stdc++.h>

2

3 using namespace std;

4

5 int main() {

6 int n, m, customer, phone;

7 vector<int> customers, phones;

8

9 cin>>n;

10 for (int i=0; i<n; i++) {

11 cin>>customer;

12 customers.push_back(customer);

13 }

14 sort(customers.begin(), customers.end(), greater <>());

15

© NZOI 2021

NZIC 2021 Round 3 Solutions 17

16 cin>>m;

17 for (int i=0; i<m; i++) {

18 cin>>phone;

19 phones.push_back(phone);

20 }

21 sort(phones.begin(), phones.end(), greater <>());

22

23 long long profit = 0;

24 int best_phone_index = 0;

25 for (auto customer: customers) {

26 while (best_phone_index < phones.size() &&

phones[best_phone_index] > customer) {↪→

27 best_phone_index += 1;

28 }

29

30 if (best_phone_index >= phones.size()) {

31 break;

32 }

33

34 profit += phones[best_phone_index];

35 best_phone_index += 1;

36 }

37 cout<<profit<<endl;

38 }

© NZOI 2021

Unofficial Contestants

https://train.nzoi.org.nz/problems/1222

Subtask 1

We can start out by trying to keep track of whether each contestant is official or
not. We create an array/list called isOfficial, where isOfficial[i] is true if
contestant number i is currently and official contestant (and false if unofficial).
When we get a toggle query for some contestant j, we just invert the value of
isOfficial[j].
Now that we’re constantly keeping track of who’s official and not, how do we
figure out a contestant’s rank at any given point? Observe that the official rank
of a contestant is simply the number of official contestants ranked above it, plus
one (itself). Therefore, when we get an output query for contestant j, we count
the number of true values between indexes 0 and j − 1 of isOfficial. That (plus
one) will be the official rank of the contestant.
We have to be careful though - it could be possible that contestant j is unofficial!
Therefore, for each output query we must first check whether or not isOfficial[j]
is false - if it is, then we output "UNOFFICIAL" instead.

Python Subtask 1 Solution

1 n = int(input())

2 m = int(input())

3

4 official = [True] * 100001

5 official[0] = False # No contestant 0 exists

6

7 for i in range(m):

8 query = input().split()

9 query_type = query[0]

18

https://train.nzoi.org.nz/problems/1222

NZIC 2021 Round 3 Solutions 19

10 competitor = int(query[1])

11

12 if query_type == 'o':

13 if official[competitor]:

14 print(official[:competitor].count(True) + 1)

15 else:

16 print("UNOFFICIAL")

17 else:

18 official[competitor] = not official[competitor]

C++ Subtask 1 Solution

1 #include <bits/stdc++.h>

2

3 using namespace std;

4

5 int main() {

6 int n, m, competitior;

7 char queryType;

8

9 cin>>n>>m;

10 vector<bool> isOfficial(n + 1, true);

11

12 for (int i=0; i<m; i++) {

13 cin>>queryType>>competitior;

14

15 if (queryType == 'o') {

16 if (!isOfficial[competitior]) {

17 cout<<"UNOFFICIAL"<<endl;

18 } else {

19 cout<<accumulate(isOfficial.begin(), isOfficial.begin()

+ competitior, 0)<<endl; // false and true can be

coerced into 0 and 1, so we can just add them up

↪→

↪→

20 }

21 } else {

22 isOfficial[competitior] = !isOfficial[competitior];

23 }

24 }

25 }

© NZOI 2021

NZIC 2021 Round 3 Solutions 20

Subtask 2

Our previous approach works well if there are a ’small’ number of contestants
and queries. (’small’ relative to the full solution - in reality we would love to
have over 1,000 NZIC competitors!). In this subtask we have 100, 000 contestants
and 50, 000 queries. Using the previous strategy, we would have to count around
50, 000 values for each of the 50, 000 queries, resulting in a total of 50, 000×50,000=
2, 500, 000, 000 calculations! Clearly this is a problem.
Luckily for us, the only competitor we output for is competitor number 50, 000.
We can build on our observation from the last subtask - the official rank of a
contestant is simply the number of official contestants ranked above it, plus one
(itself). Therefore, we only ever really care about the number of official contestants
ranked higher than competitor 50, 000.
Observe that, if an official contestant with a number smaller than 50, 000 becomes
unofficial, then the rank of competitor 50, 000 will decrease by one, as 50, 000 has
one less contestant ranked higher that it. Conversely, if an unofficial contestant
smaller than 50, 000 becomes official then the rank of 50, 000 increases by one.
Therefore, we can simply keep the rank of 50, 000 in one variable, and update
it using that strategy whenever a toggle query come in. When an output query
comes in we just output the value of the stored rank variable.

Python Subtask 2 Solution

1 n = int(input())

2 m = int(input())

3

4 official = [True] * 100001

5 rank = 50000

6

7 for i in range(m):

8 query = input().split()

9 query_type = query[0]

10 competitor = int(query[1])

11 if query_type == 'o':

12 if official[competitor]:

13 print(rank)

14 else:

15 print("UNOFFICIAL")

16 else:

17 official[competitor] = not official[competitor]

18 if competitor < 50000:

© NZOI 2021

NZIC 2021 Round 3 Solutions 21

19 if official[competitor]:

20 rank += 1

21 else:

22 rank -= 1

C++ Subtask 2 Solution

1 #include <bits/stdc++.h>

2

3 using namespace std;

4

5 int main() {

6 int n, m, competitor;

7 char queryType;

8

9 cin>>n>>m;

10 vector<bool> isOfficial(n + 1, true);

11 int rank = 50000;

12

13 for (int i=0; i<m; i++) {

14 cin>>queryType>>competitor;

15

16 if (queryType == 'o') {

17 if (!isOfficial[competitor]) {

18 cout<<"UNOFFICIAL"<<endl;

19 } else {

20 cout<<rank<<endl;

21 }

22 } else {

23 isOfficial[competitor] = !isOfficial[competitor];

24 if (competitor < 50000) {

25 if (isOfficial[competitor]) {

26 rank += 1;

27 } else {

28 rank -= 1;

29 }

30 }

31 }

32 }

33 }

© NZOI 2021

NZIC 2021 Round 3 Solutions 22

Subtask 3

In Subtask 2 we updated the ranks of one competitor whenever the status of others
were toggled. In this Subtask we take the idea further.
We only care about the ranks of competitors number 50, 000 to 50, 050. There-
fore, when an official contestant becomes unofficial, we decrease the ranks of every
competitor between 50, 000 and 50, 050 numbered higher than that contestant.
Similarly, when an unofficial contestant becomes official, we increase the ranks of
every competitor between 50, 000 and 50, 050 numbered higher than that contes-
tant.

Python Subtask 3 Solution

1 from collections import defaultdict

2

3 n = int(input())

4 m = int(input())

5

6 official = [True] * 100001

7

8 ranks = list(range(50000, 50051))

9

10 for i in range(m):

11 query = input().split()

12 query_type = query[0]

13 competitor = int(query[1])

14 if query_type == 'o':

15 if official[competitor]:

16 print(ranks[competitor - 50000])

17 else:

18 print("UNOFFICIAL")

19 else:

20 official[competitor] = not official[competitor]

21 for i in range(len(ranks)):

22 if 50000 + i > competitor:

23 if official[competitor]: # Turned from unofficial to

official↪→

24 ranks[i] += 1

25 else: # Turned from official to unofficial

26 ranks[i] -= 1

27

© NZOI 2021

NZIC 2021 Round 3 Solutions 23

C++ Subtask 3 Solution

1 #include <bits/stdc++.h>

2

3 using namespace std;

4

5 int main() {

6 int n, m, competitor;

7 char queryType;

8

9 cin>>n>>m;

10 vector<bool> isOfficial(n + 1, true);

11 vector<int> ranks(51);

12 iota(ranks.begin(), ranks.end(), 50000); // Fill ranks with values

50000, 50001, 50002 etc.↪→

13

14 for (int i=0; i<m; i++) {

15 cin>>queryType>>competitor;

16

17 if (queryType == 'o') {

18 if (!isOfficial[competitor]) {

19 cout<<"UNOFFICIAL"<<endl;

20 } else {

21 cout<<ranks[competitor - 50000]<<endl;

22 }

23 } else {

24 isOfficial[competitor] = !isOfficial[competitor];

25 for (int i = 0; i <= 50; i++) {

26 if (competitor < 50000 + i) {

27 if (isOfficial[competitor]) { // Turned from

unofficial to official↪→

28 ranks[i] += 1;

29 } else { // Turned from official to unofficial

30 ranks[i] -= 1;

31 }

32 }

33 }

34 }

35 }

36 }

© NZOI 2021

NZIC 2021 Round 3 Solutions 24

Subtask 4

In this case, there are a limited number of queries. Remember that our approaches
to the previous subtasks took advantage of the fact that there were only a limit
number of distinct competitors we had to output - only competitors number 50, 000
for Subtask 2 and competitors 50, 000 to 50, 050 for Subtask 3. Does the same ap-
ply in this subtask?
Note that for this problem, you don’t have to process a query immediately after
receiving it. In other words, we could take in all the queries, process them, and
then print the output for all the queries in one go. This is what’s called an offline
problem (as opposed to an online problem, where you have to output after each
query).
What does that mean for us? Since there are at most 500 total queries, there
are at most 500 total competitors we need to output for. That means there are
only 500 total competitors we ’care about’. We could first read in all the input
and store all the competitors we will have to output for. We then take a similar
approach to the previous subtask - for every toggle query, we update the rank of
every competitor we care about that is affected by the toggle.
There’s an additional change to the previous subtasks - N can now be up to
1, 000, 000, 000. If we continued to use our isOfficial[i] list, it would likely
break the memory limit. Even if we used only one bit per competitor, we will
still need at least 1, 000, 000, 000 bits, or around 125MB. To get around this, we
can use a map/dictionary to only store the status of competitors that appear in
queries. Thus, the map will contain at most 500 total values.

Python Subtask 4 Solution

1 from collections import defaultdict

2

3 n = int(input())

4 m = int(input())

5

6 official = defaultdict(lambda: True)

7 ranks = {}

8

9 queries = []

10 out_competitors = set()

11

12 for i in range(m):

13 query = input().split()

© NZOI 2021

NZIC 2021 Round 3 Solutions 25

14 query_type = query[0]

15 competitor = int(query[1])

16

17 queries.append((query_type, competitor))

18 if query_type == 'o':

19 out_competitors.add(competitor)

20 ranks[competitor] = competitor

21

22 for query_type, competitor in queries:

23 if query_type == 'o':

24 if official[competitor]:

25 print(ranks[competitor])

26 else:

27 print("UNOFFICIAL")

28 else:

29 official[competitor] = not official[competitor]

30 for out_competitor in out_competitors:

31 if competitor < out_competitor:

32 if official[competitor]: # Turned from unofficial to

official↪→

33 ranks[out_competitor] += 1

34 else: # Turned from official to unofficial

35 ranks[out_competitor] -= 1

36

C++ Subtask 4 Solution

1 #include <bits/stdc++.h>

2

3 using namespace std;

4

5 int main() {

6 int n, m, competitor;

7 char queryType;

8

9 cin>>n>>m;

10

11 vector<pair<char, int>> queries;

12 unordered_set<int> outCompetitors;

13 unordered_map<int, bool> isUnOfficial; // Unofficial instead of

official as bools default to false↪→

14 unordered_map<int, int> ranks;

15

© NZOI 2021

NZIC 2021 Round 3 Solutions 26

16 for (int i=0; i<m; i++) {

17 cin>>queryType>>competitor;

18 assert(competitor >= 1 && competitor <= n && (queryType == 'o'

|| queryType == 't'));↪→

19

20 queries.emplace_back(queryType, competitor);

21 outCompetitors.insert(competitor);

22 ranks[competitor] = competitor;

23 }

24

25

26 for (auto query: queries) {

27 queryType = query.first;

28 competitor = query.second;

29

30 if (queryType == 'o') {

31 if (isUnOfficial[competitor]) {

32 cout<<"UNOFFICIAL"<<endl;

33 } else {

34 cout<<ranks[competitor]<<endl;

35 }

36 } else {

37 isUnOfficial[competitor] = !isUnOfficial[competitor];

38 for (auto out_competitor : outCompetitors) {

39 if (competitor < out_competitor) {

40 if (isUnOfficial[competitor]) {

41 ranks[out_competitor] -= 1;

42 } else {

43 ranks[out_competitor] += 1;

44 }

45 }

46 }

47 }

48 }

49 }

Subtask 5 (extra for experts)

We will return to the approach we used in Subtask 1. There exists data structures
that allow modifying an arbitrary range of elements in O(log(N)) time, and finding
sums of arbitrary ranges in O(log(N)). One such example is a Fenwick Tree. If we
store an official status as a 1 and unofficial as a 0, then the rank of any competitor

© NZOI 2021

https://cp-algorithms.com/data_structures/fenwick.html

NZIC 2021 Round 3 Solutions 27

is the sum between the start of the array to the competitor.
There’s still one issue - N could be up to 1, 000, 000, 000. We can’t have a Fenwick
Tree with 1, 000, 000, 000 without breaking the memory limit. However, we can
combine this with our tricks from Subtask 4. There are up to 50, 000 queries so
there can only be at most 50, 000 competitors we care about. Therefore, instead
of having one array value for every competitor, what if we had only one for every
competitor we receive in the input? Instead of being a 1 or a 0, each value stores the
sum of official contestants between that competitor and the previous competitor
in the input. To toggle the state of a competitor, we add/subtract 1 to every value
after that competitor, using the Fenwick Tree. To output the rank of a competitor,
we output the sum between the start of the array and that competitor, also using
the Fenwick Tree.

Python Subtask 5 Solution

1 from collections import defaultdict

2

3 def get_sum(tree, i):

4 s = 0

5 i += 1

6

7 while i > 0:

8 s += tree[i]

9 i -= i & (-i)

10 return s

11

12 def update(tree, i, v):

13 i += 1

14

15 while i < len(tree):

16 tree[i] += v

17 i += i & (-i)

18

19 n = int(input())

20 m = int(input())

21

22 assert (n <= 1000000000)

23 assert (m <= 50000)

24

25 queries = []

26 competitors = []

27 isUnOfficial = defaultdict(lambda: False)

© NZOI 2021

NZIC 2021 Round 3 Solutions 28

28

29 for i in range(m):

30 query = input().split()

31 query_type = query[0]

32 competitor = int(query[1])

33

34 queries.append((query_type, competitor))

35 competitors.append(competitor)

36

37 competitors.sort()

38 tree = [0] * (len(competitors) + 1)

39 compress = {}

40

41 prev = 0

42 for i in range(len(competitors)):

43 update(tree, i, competitors[i] - prev)

44 prev = competitors[i]

45 compress[competitors[i]] = i

46

47

48 for query_type, competitor in queries:

49 competitor = compress[competitor]

50 if query_type == 'o':

51 if isUnOfficial[competitor]:

52 print("UNOFFICIAL")

53 else:

54 print(get_sum(tree, competitor))

55 else:

56 isUnOfficial[competitor] = not isUnOfficial[competitor]

57 if isUnOfficial[competitor]:

58 update(tree, competitor, -1)

59 else:

60 update(tree, competitor, 1)

C++ Subtask 5 Solution

1 #include <bits/stdc++.h>

2

3 using namespace std;

4

5 int getSum(vector<int> &tree, int index) {

6 int sum = 0;

7 index = index + 1;

© NZOI 2021

NZIC 2021 Round 3 Solutions 29

8

9 while (index > 0){

10 sum += tree[index];

11 index -= index & (-index);

12 }

13 return sum;

14 }

15

16 void update(vector<int> &tree, int index, int val) {

17 index = index + 1;

18

19 while (index < tree.size()) {

20 tree[index] += val;

21 index += index & (-index);

22 }

23 }

24

25 int main() {

26 int n, m, competitor, q=0;

27 char queryType;

28

29 cin>>n>>m;

30 assert(n <= 1000000000 && n >= 1);

31 assert(m <= 50000 && m >= 1);

32 vector<pair<char, int>> queries;

33 set<int> competitorSet;

34 unordered_map<int, bool> isUnOfficial;

35

36 for (int i=0; i<m; i++) {

37 cin>>queryType>>competitor;

38 assert(competitor >= 1 && competitor <= n && (queryType == 'o'

|| queryType == 't'));↪→

39

40 queries.emplace_back(queryType, competitor);

41 competitorSet.insert(competitor);

42 }

43

44 vector<int> tree(competitorSet.size() + 1, 0);

45 unordered_map<int, int> compress;

46

47 int i = 0, prev = 0;

48 for (auto c: competitorSet) {

49 update(tree, i, c - prev);

© NZOI 2021

NZIC 2021 Round 3 Solutions 30

50 prev = c;

51 compress[c] = i++;

52 }

53

54 for (auto query: queries) {

55 competitor = compress[query.second];

56 if (query.first == 'o') {

57 q ++;

58 if (isUnOfficial[competitor]) {

59 cout<<"UNOFFICIAL"<<endl;

60 } else {

61 cout<<getSum(tree, competitor)<<endl;

62 }

63 } else {

64 isUnOfficial[competitor] = !isUnOfficial[competitor];

65 if (isUnOfficial[competitor]) {

66 update(tree, competitor, -1);

67 } else {

68 update(tree, competitor, 1);

69 }

70 }

71 }

72

73 assert(q >= 1);

74 }

© NZOI 2021

Tim Jhomas Returns

https://train.nzoi.org.nz/problems/problem-link-here

Subtask 1

For subtask 1, the network of spies forms a line - this means the temporary con-
nection must be used to go directly back to Tim. Therefore, we should always
open our temporary connection between Tim, and the spy that is the furthest in
terms of standard connections from Tim.

Notice that the indexes of the spies in this subtask are in sequential order. This
means that spies with larger indexes are further away from Tim. Additionally, you
can only reach a spy through normal connections if there aren’t any compromised
spies with an index smaller than it. Therefore, for each day you keep track of
the spy with the smallest index who is compromised. Let’s say that index is i.
If we use our temporary connection between Tim and spy i − 1, then every spy
between 0 (Tim) and i− 1 will be able to receive the message. That gives a total
of (i− 1)− 0 + 1 = i spies that can receive the message. Therefore, we will always
output the index of the closest compromised spy.

Python Subtask 1 Solution

1 N, D = map(int, input().split())

2 for i in range(N-1):

3 input() # we don't need to store the links in this subtask, since we

know what they're going to be already↪→

4

5 print(N)

6

7 furthest_spy = N

8 for i in range(D):

31

https://train.nzoi.org.nz/problems/problem-link-here

NZIC 2021 Round 3 Solutions 32

9 furthest_spy = min(furthest_spy, int(input()))

10 print(furthest_spy)

Subtask 2

For future terminology - we will root the tree at node 0 - or Tim’s node. This
means that we define a node’s depth as the distance from that node to the root
- with node 0 having a depth of zero. A leaf node is one that doesn’t have any
neighbours who are deeper than itself.

Let’s say two nodes are in the same ”branch” if the first node in the path from
0 to them are the same. For the temporary connection, you have to connect two
spies in two different branches - if you connect spies in the same branch, you would
have no way of connecting back to spy 0 without reusing spies.

Notice it is never optimal to use a temporary connection on a non-leaf node - you
can always visit more spies by using the temporary connection on a descendant leaf
node instead. Therefore, the biggest collection of spies before the first day would
be achieved by connecting the two deepest spies that are in differing branches.
This can be done in O(N) time - traverse the tree, and for each branch, find its
deepest node. Then, get the two deepest branches, then add their depths and add
1 (don’t forget to include Tim) to get the answer. The only edge case is if there
is only one branch - in which case you have to use a temporary connection to get
back to Tim, which means the answer is just the deepest node plus 1 - which is
also O(N) time. We only need to do this once, because there are zero extra days
- so we can complete this in linear time.

Python Subtask 2 Solution

1 import sys

2 sys.setrecursionlimit(10**6)

3

4 N, D = map(int, input().split())

5

6 adj = [[] for i in range(N)]

7

8 for i in range(N-1):

9 a, b = map(int, input().split())

10 adj[a].append(b)

11 adj[b].append(a)

12

13 def two_deepest_branches(cur, parent, adj_list):

© NZOI 2021

NZIC 2021 Round 3 Solutions 33

14 branches = [0]

15 for neighbour in adj[cur]:

16 if neighbour != parent:

17 branches.append(

18 max(two_deepest_branches(neighbour, cur, adj_list)) + 1

19)

20 branches.sort()

21 return branches[-2:]

22

23 print(sum(two_deepest_branches(0, -1, adj)) + 1)

Subtask 3

For this subtask, we can reuse the solution for subtask 2 - but just repeat it after
each day a spy gets compromised. Remember how the network of spies forms a
tree - this means there is only one path between any two nodes (property of a tree
- this is true for any tree). Notice how if a spy gets compromised - it’s children
might as well also be compromised - as the only way to reach them from node zero
would be with the temporary connection - but then it would be impossible to get
the message back. This means we can just traverse the tree and repeat the solution
for subtask 2, but just remember to not visit nodes that have been disabled. The
algorithm from subtask 2 runs in O(N) times, and you will have to repeat it D
times for D days - which means this runs in O(ND), which is sufficient for this
subtask.

Python Subtask 3 Solution

1 import sys

2 sys.setrecursionlimit(10**6)

3

4 N, D = map(int, input().split())

5

6 adj = [[] for i in range(N)]

7 deleted = set()

8

9 for i in range(N-1):

10 a, b = map(int, input().split())

11 adj[a].append(b)

12 adj[b].append(a)

13

14 def two_deepest_branches(cur, parent, adj_list, deleted):

© NZOI 2021

NZIC 2021 Round 3 Solutions 34

15 branches = [0]

16 for neighbour in adj[cur]:

17 if neighbour != parent and neighbour not in deleted:

18 branches.append(

19 max(two_deepest_branches(neighbour, cur, adj_list,

deleted)) + 1↪→

20)

21 branches.sort()

22 return branches[-2:]

23

24 print(sum(two_deepest_branches(0, -1, adj, deleted)) + 1)

25

26 for i in range(D):

27 k = int(input())

28 deleted.add(k)

29 print(sum(two_deepest_branches(0, -1, adj, deleted)) + 1)

Subtask 4

For this subtask O(ND) will time out, as N and D go up to 50000. Remember,
if there is only one branch in the tree - the best solution is just the deepest node.
For this subtask, Tim only has one neighbour - which means there is only one
branch. This means for each day, we just need to find the deepest node that isn’t
deactivated, and has no deactivated ancestors - or in other words, has a path from
it to Tim without encountering compromised spies.

Doing this naively will result in O(N) every day, and O(ND) overall, which is too
slow. However, we can use a priority queue, set or similar data structure to do
this in log(N) time. This data structure will store all the nodes and their depths,
and find the current deepest one in log(N) time. However, we also need to be able
to remove nodes as well. If we use a set - we can remove a node in log(N) time.
There are N nodes, so it takes worst case overall N log(n) to remove nodes, and
D log(N) to find the deepest node - which is fast enough.

Python Subtask 4 Solution

1 import heapq

2 import sys

3 sys.setrecursionlimit(10**6)

4

5 N, D = map(int, input().split())

6

© NZOI 2021

NZIC 2021 Round 3 Solutions 35

7 adj = [[] for i in range(N)]

8 rooted_adj = [[] for i in range(N)]

9 depths_nodes = []

10 deleted = set()

11

12 for i in range(N-1):

13 a, b = map(int, input().split())

14 adj[a].append(b)

15 adj[b].append(a)

16

17 def root_and_find_depths(cur, parent, adj_list, rooted_adj, depth):

18 heapq.heappush(depths_nodes, (-depth, cur))

19

20 for neighbour in adj[cur]:

21 if neighbour != parent:

22 rooted_adj[cur].append(neighbour)

23 root_and_find_depths(neighbour, cur, adj_list, rooted_adj,

depth + 1)↪→

24

25 def delete_node(cur, rooted_adj, deleted):

26 deleted.add(cur)

27 for neighbour in rooted_adj[cur]:

28 if neighbour not in deleted:

29 delete_node(neighbour, rooted_adj, deleted)

30

31 root_and_find_depths(0, -1, adj, rooted_adj, 0)

32

33 print(-depths_nodes[0][0] + 1)

34

35 for i in range(D):

36 k = int(input())

37 delete_node(k, rooted_adj, deleted)

38 while (depths_nodes[0][1] in deleted):

39 heapq.heappop(depths_nodes)

40 print(-depths_nodes[0][0] + 1)

Subtask 5

Let B be the number of branches. We can perform the solution in subtask 4 for
all of the B branches. Notice after each day we only need to update one branch
- this means updates can be done in overall N log(N). However, naively finding
the largest branch takes up to O(B). This has to be done every day - which is

© NZOI 2021

NZIC 2021 Round 3 Solutions 36

too slow. However, we can use a set to store the max depth of each branch -
and get the 2 largest branches, which takes log(N) to update and query. When
nodes get deleted, we recalculate the max depth of the affected branch by using
it’s set/priority queue structure (discussed in Subtask 4). This gives a worst case
D log(N) performance - which is sufficient for the full solution.

C++ Subtask 5 Solution

1 #include <bits/stdc++.h>

2

3 using namespace std;

4

5 vector<vector<int>> adj_list = vector<vector<int>>(50001);

6 unordered_set<int> deleted;

7 vector<int> branch_of_node = vector<int>(50001);

8 vector<int> parent_of_node = vector<int>(50001);

9 vector<int> depth_of_node = vector<int>(50001);

10

11 // Compare nodes by their depths.

12 // Extra condition when depths equal is to guarantee uniqueness within

sets↪→

13 struct cmp_nodes {

14 bool operator() (int a, int b) const {

15 if (depth_of_node[a] == depth_of_node[b]) {

16 return a > b;

17 } else {

18 return depth_of_node[a] > depth_of_node[b];

19 }

20 }

21 };

22

23 vector<set<int, cmp_nodes>> nodes_of_branch = vector<set<int,

cmp_nodes>>(50001);↪→

24 set<int, cmp_nodes> deepest_in_branch;

25

26 void find_depths_of_branch(int branch, int cur, int parent, int depth) {

27 branch_of_node[cur] = branch;

28 parent_of_node[cur] = parent;

29 depth_of_node[cur] = depth;

30

31 nodes_of_branch[branch].insert(cur);

32

33 for (auto neighbour : adj_list[cur]) {

© NZOI 2021

NZIC 2021 Round 3 Solutions 37

34 if (neighbour != parent) {

35 find_depths_of_branch(branch, neighbour, cur, depth + 1);

36 }

37 }

38 }

39

40 void delete_node(int cur) {

41 nodes_of_branch[branch_of_node[cur]].erase(cur);

42 deepest_in_branch.erase(cur);

43 deleted.insert(cur);

44

45 for (auto neighbour : adj_list[cur]) {

46 if (neighbour != parent_of_node[cur] && deleted.find(neighbour)

== deleted.end()) {↪→

47 delete_node(neighbour);

48 }

49 }

50 }

51

52 // Get sums of depths of two deepest branches, or depth of deepest

branch if only one exists↪→

53 int two_deepest() {

54 int answer = 0;

55 auto deepest = deepest_in_branch.begin();

56 answer += depth_of_node[*deepest];

57 deepest++;

58 if (deepest != deepest_in_branch.end()) {

59 answer += depth_of_node[*deepest];

60 }

61 return answer;

62 }

63

64 int main() {

65 int n, m, a, b, k;

66 cin>>n>>m;

67

68 for (int i=0; i<n-1; i++){

69 cin>>a>>b;

70 adj_list[a].push_back(b);

71 adj_list[b].push_back(a);

72 }

73

74 for (auto branch : adj_list[0]) {

© NZOI 2021

NZIC 2021 Round 3 Solutions 38

75 find_depths_of_branch(branch, branch, 0, 1);

76 deepest_in_branch.insert(*nodes_of_branch[branch].begin());

77 }

78

79 cout<<two_deepest() + 1<<endl;

80

81 for (int i=0; i<m; i++) {

82 cin>>k;

83 delete_node(k);

84

85 if (nodes_of_branch[branch_of_node[k]].begin() !=

nodes_of_branch[branch_of_node[k]].end()) {↪→

86

deepest_in_branch.insert(*nodes_of_branch[branch_of_node[k]].begin());↪→

87 }

88

89 cout<<two_deepest() + 1<<endl;

90 }

91 }

© NZOI 2021

Big O complexity

Computer scientists like to compare programs using something called Big O nota-
tion. This works by choosing a parameter, usually one of the inputs, and seeing
what happens as this parameter increases in value. For example, let’s say we have
a list N items long. We often call the measured parameter N . For example, a list
of length N .

In contests, problems are often designed with time or memory constraints to make
you think of a more efficient algorithm. You can estimate this based on the
problem’s constraints. It’s often reasonable to assume a computer can perform
around 100 million (100 000 000) operations per second. For example, if the prob-
lem specifies a time limit of 1 second and an input of N as large as 100 000,
then you know that an O(N2) algorithm might be too slow for large N since
100 0002 = 10 000 000 000, or 10 billion operations.

Time complexity

The time taken by a program can be estimated by the number of processor opera-
tions. For example, an addition a+b or a comparison a < b is one operation.

O(1) time means that the number of operations a computer performs does not
increase as N increases (i.e. does not depend on N). For example, say you have a
program containing a list of N items and want to access the item at the i-th index.
Usually, the computer will simply access the corresponding location in memory.
There might be a few calculations to work out which location in memory the entry
i corresponds to, but these will take the same amount of computation regardless of
N . Note that time complexity does not account for constant factors. For example,
if we doubled the number of calculations used to get each item in the list, the time
complexity is still O (1) because it is the same for all list lengths. You can’t get a
better algorithmic complexity than constant time.

O(logN) time suggests the program takes a couple of extra operations every time

39

NZIC 2021 Round 3 Solutions 40

N doubles in size.1 For example, finding a number in a sorted list using binary
search might take 3 operations when N = 8, but it will only take one extra
operation if we double N to 16. As far as efficiency goes, this is pretty good, since
N generally has to get very, very large before a computer starts to struggle.

O(N) time means you have an algorithm where the number of operations is directly
proportional to N . For example, a maximum finding algorithm max() will need to
compare against every item in a list of length N to confirm you have indeed found
the maximum. Usually, if you have one loop that iterates N times your algorithm
is O(N).

O (N2) time means the number of operations is proportional to N2 . For example,
suppose you had an algorithm which compared every item in a list against every
other item to find similar items. For a list of N items, each item has to check
against the remaining N − 1 items. In total, N(N − 1) checks are done. This
expands to N2 − N . For Big O, we always take the most significant term as the
dominating factor, which gives O(N2). This is generally not great for large values
of N , which can take a very long time to compute. As a general rule of thumb in
contests, O(N2) algorithms are only useful for input sizes of N . 10 000. Usually,
if you have a nested loop in your program (loop inside a loop) then your solution
is O(N2) if both these loops run about N times.

1More formally, it means there exists some constant c for which the program takes at most c
extra operations every time N doubles in size.

© NZOI 2021

	Overview
	Dorothy’s Red Shoes
	Bulk Buying
	KB Lo-Fi
	Unofficial Contestants
	Tim Jhomas Returns
	Big O complexity

