New Zealand Informatics Competition 2021
Round 1 Solutions

March 7, 2021

Overview

Questions

1. Emma’s Socks

2. Mind Reader

3. Counting Threes

4. Shocking Calculation
5. Hot Chocolate

The solutions to these questions are discussed in detail below. In a few questions
we may refer to the Big O complexity of a solution, e.g. O(N). There is an
explanation of Big O complexity at the end of this document.

Resources

Ever wondered what the error messages mean?
www.nzoi.org.nz/nzic/resources/understanding-judge-feedback.pdf
Read about how the server marking works:
WWw.nzoi.org.nz/nzic/resources/how-judging-works-python3.pdf
Ever wondered why your submission scored zero?

Why did I score zero? - some common mistakes

See our list of other useful resources here:

WWW.nzoi.org.nz/nzic/resources

https://www.nzoi.org.nz/nzic/resources/understanding-judge-feedback.pdf
https://www.nzoi.org.nz/nzic/resources/how-judging-works-python3.pdf
https://www.nzoi.org.nz/nzic/resources/why-did-i-score-zero.pdf
https://www.nzoi.org.nz/nzic/resources

© oo ~ (=]

10

11

12

NZIC 2021 R1 Solutions — Overview 2

Tips for next time

Remember, this is a contest. The only thing we care about is that your code runs.
It doesn’t need to be pretty or have comments. There is also no need to worry
about invalid input. Input will always be as described in the problem statement.
For example, the code below is not necessary.

def error_handling(prompt) :
while True:
try:
N = int(input (prompt))
if N < 0 or N > 100:
print ('That was not a valid integer!')
else:
return N
except ValueError:
print('Not a valid integer')

There are a few other things students can do to improve their performance in
contests.

Practice getting input

A number of students tripped up on processing input with multiple integers on a
single line. A neat trick for processing this sort of input in Python is to use the
str.split() method and the map() function. The split() method will break up
a string at space characters, returning a list of the words. The map() function can
be used to apply int () to each string in this list, converting them to integers. For
example, suppose we have the following line of input:

1427
We can turn this into a list of integers with the Python statement
my_ints = list(map(int, input().split()))

Notice that we used 1ist (). This is because map() returns us a special generator
object, not a list. However, generator objects are easily converted to lists.

We suggest having a go at some of the NZIC Practice Problems.

© NZzOI 2021

https://docs.python.org/3/library/stdtypes.html#str.split
https://docs.python.org/3/library/functions.html#map
https://docs.python.org/3/library/stdtypes.html#str.split
https://docs.python.org/3/library/functions.html#map
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#map
https://train.nzoi.org.nz/problem_sets/296

NZIC 2021 R1 Solutions — Overview 3

Move on to the next question

If you are spending too much time on a question, move on. There could be easy
subtasks waiting in the next question. Often, you will think of a solution to
your problem while working on another question. It also helps to come back to a
question with a fresh pair of eyes.

Take time to read the questions

Don’t underestimate the value of taking time to read and understand the question.
You will waste exponentially more time powering off thinking you have the solution
only to discover you missed something obvious.

In the real world, it is very rare to be provided with a problem in a simplistic
form. Part of the challenge with these contests is reading and understanding the
question, then figuring out what algorithm will be needed. Before submitting,
check to make sure you have done everything the question asks you to do.

Test your code first!

It is much more time efficient to test your solutions on your own computer first.
It can take a while to wait for the server to run your code. It is far more efficient
to test it yourself first, submit it, then start reading the next question while you
wait for your previous solution to be marked by the server.

While testing, remember to add some edge case tests. For example, if a question
specifies “1 < N < 107 then try out an input where N = 1. Think of other tricky
inputs that might break your code. Look at the feedback the server is giving
you.

Use a rubber duck

https://en.wikipedia.org/wiki/Rubber_duck_debugging

© NZOT 2021

https://en.wikipedia.org/wiki/Rubber_duck_debugging

Emma’s Socks

https://train.nzoi.org.nz/problems/1213

There will always be two of every sock colour, except for the missing colour, which
will only have one. We count the number of each colour of socks, and print out

10

11

12

13

14

15

16

17

18

19

20

the colour that has a count of 1.

Python Solution

count_red, count_blue, count_purple, count_pink = (0, 0, 0, 0)

for i in range (0,7,1):
colour_in = input()

if colour_in == 'Red':
count_red +=1
elif colour_in == 'Blue':

count_blue +=1

elif colour_in == 'Purple':

count_purple +=1
else:
count_pink +=1

if count_red !'= 2:
print ('Red')

elif count_blue != 2:
print ('Blue')

elif count_purple != 2:
print ('Purple')

else:
print ('Pink"')

Or a one-line solution for fun.

[[print(s)if 2-x.count(s) else O for s in x]Jfor x in[[input()for

— range(7)]1]]

in

https://train.nzoi.org.nz/problems/1213

10

11

12

13

14

15

16

17

18

19

20

21

22

NZIC 2021 R1 Solutions — Emma’s Socks

C++ Solution

#include <iostream>
#include <string>
#include <map>
using namespace std;

typedef map<string, int> msi;

int main () {

msi names = {{"Red",0},{"Blue",0},{"Purple",0},{"Pink",0}};

for (int i = 0; 1 < 7; i++) {
string colour;
cin >> colour;
names [colour] += 1;
}
for (const auto& [k, v] : names) {
if (v == 1) {
cout << k << endl;
return O;

}

return 1; // error

}

This solution uses structured bindings which are only available since C+-+17.

© NZOI 2021

IS

oo ~ =] t

9

10

11

o

2

Mind Reader

https://train.nzoi.org.nz/problems/1218

First, let’s try to figure out how many cards are larger than a certain card within
the same suit. One way of doing this is the put all the card numbers, in ascending
order, into a list. Then, we can use a function to find the *index™ of any card
number in the list (such as index() in Python or find() in C++). This index
will be equal to the number of cards smaller than that number within the same
suit. We know there are 13 cards per suit, so the number of cards greater is
13 — index — 1 = 12 — index.

We can then apply the same approach for the suits. Each suit contains 13 cards,
for each suit greater than our card’s suit, there are an additional 13 greater
cards. Thus, the total number of cards greater is: 13 * suits greater + numbers
greater.

Python Solution

cards=['2', '3', '4', '5', '6', '7', '8', '9', '10', 'J', 'Q', 'K','A']
suit=["spades", "clubs", "diamonds", "hearts"]

user_card=input ()

user_suit=input ()

my_i=cards.index (user_card)
my_s=suit.index(user_suit)

above_card=12-my_i
above_suit=3-my_s
total=above_card+13*above_suit
print(total)

https://train.nzoi.org.nz/problems/1218

10

11

12

13

14

15

NZIC 2021 R1 Solutions — Mind Reader 7

Python 1-Line Solution

print(12-"2 34 56 7 8 9 10 J Q K A".split().index(input())+(3-"spades
< clubs diamonds hearts".split().index(input()))=*13)

C+++ Solution

#include <iostream>

#include <string>

#include <vector>

#include <algorithm>

using namespace std;

int main () {
vector<string> n =

{rn,ngn ngn ngn ngh wgn ngn g g ngn Qe K" A"}

vector<string> s = {"spades", "clubs", "diamonds", "hearts"};
vector<string> sam(2);
cin >> sam[0] >> sam[1];
int pl = search(n.begin(),n.end(),sam.end()-1,sam.end())-n.begin();
int p2 = search(s.begin(),s.end(),sam.end()-1,sam.end())-s.begin();
cout << (12 - pl) + (3 - p2)*13 << endl;

© NZOI 2021

N4 o o A W N =

oo -~ =] ot - w [N =

Counting 3s

https://train.nzoi.org.nz/problems/1207

Subtask 1

It holds that 1 < N < 20. In this range, there are only two numbers that each
contain one 3, these are 3 and 13. Therefore, the answer is 0 for 1 < N < 3,
1for 3 < N < 13, and 2 for 13 < N < 20. We can do this with conditional
statements.

Subtask 1 Python Solution

N = int(input())
if N < 3:

print (0)
elif N < 13:

print (1)
else:

print(2)

Subtask 1 C+-+ Solution

#include <iostream>
using namespace std;

int main(){
int N;
cin >> N;
if (N < 3) cout << "O\n";
else if (N < 13) cout << "1\n";

https://train.nzoi.org.nz/problems/1207

10

~ [=2] ot - w [V =

s w N R

(=]

N

NZIC 2021 R1 Solutions — Counting 3s 9

else cout << "2\n";

Subtask 2

It holds that 1 < N < 20000. Since N is still small enough, we can methodically
count the number of threes in each integer for all integers up to N.

With this solution, we must loop N times. Each time, we must check each digit
in the number to see if it is a 3. The number of digits in some number £ is log;, k.
Hence, we can calculate how many total iterations 7" we need. For example, there
are about 10 numbers with one digit, 100 numbers with two digits, etc. This

gives
logioN

T=)" (dx10%) + Nlog,oN.
d=1
So, for N = 20000 we get

T=1x10"+2x10>+3x10°+2 x4 x 10* = 83210.

A computer can easily do this in under a second. In general, the complexity of
this solution is O(N log N) since the Nlog;oN factor dominates for large N.

Subtask 2 Python Solution

N = int(input())
total = O
for i in range(1l, N+1):
for digit in str(i):
if digit == "3":
total += 1
print(total)

Subtask 2 C++ Solution

#include<iostream>
using namespace std;

int main ()

{
long N; cin >> N;
long total = 0;

© NZOI 2021

10

11

12

13

14

15

16

NZIC 2021 R1 Solutions — Counting 3s 10

for (long i = 1; i <= N; i++) {
long num = i;
while (num) {
if (num % 10 == 3) total += 1;
num /= 10;
}
}

cout << total << endl;

Subtask 3 and 4

Here, N can be up to 2000000 000000000 (two quadrillion). Our Subtask 2 so-
lution would take more than one million years to compute this on the average
computer processor, putting it slightly over the one second limit for this problem.
We need a new approach. Time to call in our friend mathematics!

First off, you may notice that the answer when N is a multiple of 10 seems to
follow a pattern. For N = 10, we get 1 three. For N = 100, we get 20 threes. For
N = 1000, we get 300 threes. This pattern continues as we multiply N by 10 with
the sequence of answers being 4 000, 50 000, 600 000, and so on. Specifically, the
answer for powers of ten is given by z x 10! where z is the number of zeros in N.
At first glance, this pattern might not seem very helpful for values of N that are
not multiples of 10, but we can work around this by breaking up /N into numbers
that are simple multiples of multiples of 10. For example, if N = 1023 then the
total number of threes up to 1023 is the same as the sum of the total number of
threes up to each of 1000, 20, and 3.

With this technique, the only thing we have left to work out is how many extra
threes we need to add for numbers with a leading digit that is higher than 1. For
example, there are double the number of threes for N = 20 than there are for
N = 10. The same rule holds for numbers with more zeros. For example, 1000
has half the number of threes that 2000 does. This is because for every number
of the form Ozzx (where x is any digit) there is a corresponding number of the
form lzzx. Hence, the sum of threes in all numbers fitting the form Ozzx is equal
to the sum of threes in all numbers fitting lzxx. The rule is then to calculate
the number of threes in the highest power of 10 that is less than or equal to our
number and multiply this by the leading digit of our number. For example, the
number of threes up to N = 1000 is 300, so the number of threes up to N = 2000
is 300 x 2 = 600 (where 2 is the leading digit).

For cases where the leading digit is less than 3, we have the full solution. However,

© NZzOI 2021

NZIC 2021 R1 Solutions — Counting 3s 11

if the leading digit is 3. For example, if N = 322, then we need to calculate the
number of threes we could count if N = 300, N = 20, and N = 2, but then
also add an extra 22 threes to our answer which are contributed for all numbers
from 301 up to 322 (due to the leading 3). We also need to add 1 to the total to
account for the three in 300. For numbers with a leading digit greater than 3, the
number of extra threes contributed by the leading 3 is a power of 10. Specifically,
we need to account for all the numbers which are of the form 3xxx.. where x is any
lower place value digit. Hence, we add to the total the highest power of 10 that
is less than or equal to our simpler number. We could equivalently account for
this contribution by increasing the leading digit by one for numbers with a leading
digit greater than 3.

In summary
Find the number of digits 3 in all numbers up to and including N.

1. Break the number N into the sum of simpler numbers that only contain
a leading digit, with all other digits being zero. For example, N = 1023
becomes the sum of the counts for N = 1000, N = 20, and N = 3.

2. For each of these simpler numbers

(a) Calculate the number of 3s up to the highest power of 10 that is less
than or equal to N. For example, the highest power of 10 for N = 80 000
is 10000. The number of 3s up to 10000 is then easily calculated to be
4 000 by following the pattern we observed earlier. Let’s call this number
S;, where j is the index of the highest place value. This gives us the
equation S; = jx 10771 In our example, j = 4 since there are 5 digits in
the number and we index starting from 0. Hence, Sy = 4x10*~1 = 4000.

(b) Multiply S; by the digit of highest place value. From the previous
example of N = 80000 we would multiply by 8, giving 32 000.

(c) If the digit of highest place value is equal to three, add the number
represented by all digits of lower place value index than j and add one
to this number.

(d) If the digit of highest place value is greater than three, add 107 threes.
Hence, in our previous example, we add 10* to 32 000. This gives a final
total of 42000 digits 3 for numbers up to N = 80 000.

With this approach, our solution requires a main loop which iterates on the number
of digits in [V instead of having to iterate more than N X log;, IV times as we did
in the Subtask 2 solution. This means that instead of far more than 2 quadrillion

© NZOI 2021

10

11

12

13

14

15

16

17

18

NZIC 2021 R1 Solutions — Counting 3s 12

iterations in the worst case, only 15 iterations are required. The number of digits
in N is logy, V. Hence, the complexity of this solution is O (log N). This is much
more manageable for large N than the O (N log N) solution from Subtask 2.

Full Python Solution

N = input()
ans = 0
Start where i=0 indexes the digit with highest place value
for i in range(len(N)):
d = int(N[i]) # Digit of highest place value
j = len(N) - i - 1 # Place value index (inverse of i)
sj = j * (10%xj)//10 # Num threes up to highest pow
ans += d * sj
if d == 3:
Add number read from lower place value digits

Add one to account for the '300...' case.
Concat "O" so that an empty sub string does not error
ans += int("0" + N[i+1:]) + 1
elif d > 3:
Add extra threes according to place value index
ans += 10%%j

print (ans)

Or, a one-line solution for fun. Note that this solution takes a slightly different
approach to the calculation but it does get the same result.

print ([sum([[(p+1 if x>3 else p)*10**(len(N)-i-1)+(int("O"+N[i+1:])+1 if
— x==3 else 0)for x,p in[map(int, [N[i],"0"+N[:11]1)]]1[0]for i in
— range(len(N))])for N in[input()]][01)

Full C++ Solution

#include <iostream>
#include <string>
#include <cmath>
using namespace std;

int main()
{
string N; cin >> N;
long long value, j, total = 0, len = N.length();

© NZOI 2021

11

12

13

14

15

16

17

18

19

20

21

22

NZIC 2021 R1 Solutions — Counting 3s

for (int 1 = 0; i < len; i++) {
value = N[i] - '0O';
j=1len - i - 1;
if (j > 0) total += value * j * pow(10, j-1);
if (value == 3) {
total += 1;
if (i + 1 < len) total += stoll(N.substr(i + 1));
} else if (value > 3) {
total += pow(10, j);

}

cout << total << endl;

13

© NZOT 2021

=] t - w [N —

Shocking calculation

https://train.nzoi.org.nz/problems/1195

This problem asks you to use addition and multiplication at most once to add up
to a target. This is complicated by the fact that there is a different cost to using
each digit or operation.

Subtask 1

The first thing we need to do is to figure out for a given number how much shock
it would cost. You would first break up that number into its corresponding digits
and add up the shock cost of its digits. Let’s call Shock(z) = shock value of typing
in the number .

For Subtask 1, all shock values are 1, so we only need to minimise the number
of button presses. Using a multiplication or addition will always result in more
button presses - can you see why? This means it’s always optimal to simply enter
the number and press the ‘=" button. The answer is just the number of digits in
the target value plus 1 for the "=’ button.

Python Subtask 1 Solution

N = int(input())

shocks = 0
while N > O:
N //= 10

shocks += 1
print(shocks + 1)

And a simple 1-liner:

print (len([input (), input(), input()][0])+1)

14

https://train.nzoi.org.nz/problems/1195

© oo ~ [=2] ot = w [V =

e e T T T
00 ~ =] t - w M) — (=)

=
©

NZIC 2021 R1 Solutions — Shocking calculation 15

C++4 Subtask 1 Solution

#include <iostream>
#include <string>
#include <cmath>

using namespace std;

int N;
int shocks = 0;

int main()

{
cin >> N;
for (; N > 0; N/=10) {
shocks++;
}
cout << shocks+1;
}

Subtask 2

One way we can obtain the lowest shock to reach a target is to try all possible
combination of values which multiply and add to the target.

We can loop through every element A in the range [0, target], where we will sum
A and (target — A) to become the target. This will try out all of the possible
additions we can do to make up the target.

Additionally, A could be made up of a multiplication for two numbers. We can
try to multiply two numbers to A - lets loop through every element B in [0, A].
If A is divisible by B, we can try multiplying B % (A/B) = A. If the best shock
value from this method is better than the shock value of A, then we use that value
instead of A.

Using these two operations, we would acquire the optimal shock value of the target.
We have to be careful to also run the multiplication method by itself on target,
as the best solution could be to do a single multiplication without addition. The
running time of this algorithm is O(N?).

© NZzOI 2021

© oo ~ [=2] ot = w [V =

N - T
'y w N = (=}

-
t

16

17

18

19

20

21

22

23

24

NZIC 2021 R1 Solutions — Shocking calculation 16

Python Subtask 2 Solution

N = int(input())
V = list(map(int,input() .split()))
0 = list(map(int,input().split()))

def cost(n):
return sum(map(lambda x: V[int(x)], str(a)))

best = cost(N) + 0[2]

for x in range(l, N + 1):
cur = cost(x)
y=1
while y*y <= x:
if x %y == 0:
cur = min(cur, cost(y) + cost(x // y) + 0[1])

y+=1
if x < N:

—

cur += cost(N - x) + 0[0]
best = min(best, cur + 0[2])

print (best)

Subtask 3 (Full solution)

An additional observation that is used to optimise the solution is that when looping
through B, it is unnecessary to loop through all of [0, A]. Simply looping from 0 to
VA is sufficient as this will contain all pairs of numbers that multiply to A. This
optimization brings our running time down to O(N % v/N), which is sufficient for
the full solution.

But we can do better! Instead of trying to find numbers that multiply to A, we
can instead try to use A to multiply to target. We can try both multiplying A
with a number to get target, and multiplying A with a number and then adding
another number. For the latter choice, we can iterate through all numbers B such

that A * B j target. For each of those iterations, we calculate the cost of doing
Ax B+ (target — A x B).

© NZOT 2021

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

NZIC 2021 R1 Solutions — Shocking calculation

Can you see how this approach is faster? Hint: 1+4+3+...++ € O(log(n))

Python Full Solution

N = int(input())
V = list(map(int,input().split()))
0 = list(map(int,input() .split()))
def cost(n):
return sum(map(lambda x: V[int(x)], str(an)))
best = cost(N) + 0[2]
for x in range(l, N + 1):
cur = cost(x)
y=1
while y*y <= x:
if x %y == 0:
- and (x/y)
y+=1
if x < N:
< multiplication, as calculated previously
cur += cost(N - x) + 0[0]
best = min(best, cur + 0[2])
print(best)

cur = min(cur, cost(y) + cost(x // y) + 0[1]) # Multiply vy

Add x and (N-x). (N-x) might itself be made up of a

C++ Full Solution

#include <cstdio>
#include <map>

#include <cstring>

using namespace std;

int

shock[22] ;

map<char, int> ctoi;

int

calcshock(int val) {

© NZOI 2021

11

12

13

14

15

16

17

18

19

20

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

NZIC 2021 R1 Solutions — Shocking calculation

char cvall[8]
int ret = 0;
sprintf (cval
for (int i=0

if (

’

, "hd", val);
; 1<8; i++) {
cval[i] == '\0') break;

ret += shockl[ctoilcvallill]l;

¥

return ret;

int main() {

int n;
scanf ("%4",

for (int i=0
ctoi

&n) ;

; 1<10; i++) o
['0'+i] = 1;

scanf ("%d", shock+i);

ctoil['+"']
scanf ("%d",
ctoil['*'] =
scanf ("%d",
ctoil['='] =
scanf ("%d",

int volts =
for (int i=1

10;
shock + ctoil'+']);
11;
shock + ctoil'*']);
12;
shock + ctoil'=']);

123456789;
; i<=n; i++) {

18

// init ishock to be shock of typing it in directly

int

for (int j=1; j*j<=i; j++) {

}

// add shock of typing n-i if n != i

ishock = calcshock(i);

if (4% == 0) {

// try to test if it's better to press

« buttons to mulitply to i

ishock = min(ishock, calcshock(j) +
— calcshock(i/j) + shock[ctoil['*']1]);

int cmpshock = ishock + (i!=n 7 calcshock(n-i) +

—

if (cmpshock + shock[ctoil['=']] <= volts) {

shock[ctoil['+']] : 0);

© NZOI 2021

51

52

53

54

55

56

57

58

59

60

10

11

12

13

14

15

16

17

18

19

20

NZIC 2021 R1 Solutions — Shocking calculation 19

volts = min(volts, cmpshock + shock[ctoi['=']]);
}

volts = min(volts, cmpshock + shock[ctoi['=']]);

volts = min(volts, calcshock(n)+shock[ctoi['="']1]);
printf ("%d\n", volts);
return O;

Python Faster Solution

price = int(input())

volts = list(map(int,input().split()))
ops = list(map(int,input().split()))
cache = [-1]%100001

def cost(n):
if cache[n] == -1:
cache[n] = sum(map(lambda x: volts[int(x)], str(n)))
return cache[n]

best = cost(price) + ops[2] # just type the price

for x in range(1l, price):
best = min(best, cost(x) + cost(price - x) + ops[0] + ops[2]) #
— single addition
if price % x ==
best = min(best, cost(x) + cost(price // x) + ops[1l] + ops[2])
— # single multiplication

for y in range(l, price // x + 1):
best = min(best, cost(x) + cost(y) + cost(price - x * y) +

— sum(ops)) # multiply and add

print (best)

© NZOI 2021

Hot Chocolate

https://train.nzoi.org.nz/problems/1195

Subtask 1

In this subtask, there is no capacity in the right hot chocolate machine. This
means that every student must get their drinks from the left hot chocolate machine.
Therefore, there are two cases in which it is impossible for the students to all be
satisfied:

e There is not enough capacity in the left machine for everyone to drink

e Omne or more students have a strict preference for the right machine (which
they cannot drink out of, as it has no capacity)

If none of those conditions are true, then everyone can happily get their fill from
the left machine, and so the total happiness is the sum of everyone’s happiness
values for the left machine.

Python Subtask 1 Solution

1, r = map(int, input() .split())
n = int(input())
total = 0O
for i in range(n):
ci, 1i, ri = map(int, input().split())
if 11 == -1:
print("Camp is cancelled")
break
total += 1i
1 -—=ci
if 1 < 0:

20

https://train.nzoi.org.nz/problems/1195

12

13

14

15

N o o oA W N

© oo

10

11

12

13

14

15

16

NZIC 2021 R1 Solutions — Hot Chocolate 21

print("Camp is cancelled")
break
else:
print(total)

Subtask 2

In this subtask, every student has a strong preference. That means that we must
assign every student to drink from the machine that they prefer. Similarly to the
previous subtask, there are two cases where we cannot satisfy everyone:

e There is not enough capacity in the left machine for every left-preferring
student to drink

e There is not enough capacity in the right machine for every right-preferring
student to drink

Thus, similarly to the last subtask, we iterate through every student and make
them ’drink’ from their preferred machine. We stop if a machine cannot supply
the current student, or all students have been satisfied.

Python Subtask 2 Solution

1, r = map(int, input().split())
n = int(input())
total = 0O
for i in range(n):
ci, 1li, ri = map(int, input().split())

if 11 == -1:
total += ri
r —=ci

elif ri == -1:
total += 1i
1 -=ci

if 1 < 0orr <O0:
print("Camp is cancelled")
break
else:
print (total)

© NZOI 2021

©] ~ =] t -

10

NZIC 2021 R1 Solutions — Hot Chocolate 22

Subtask 3

For the general case, we will adopt a Dynamic Programming approach. Dynamic
Programming, or DP, isn’t straight forward to explain, but for your interest you
may want to read Chapter 7 of the Competitive Programming Handbook. We will
assume you have a reasonable understanding of DP for the rest of the solution to
this problem.

You may have noticed that this problem is in many ways similar to the classic
Knapsack Problem. You can think of the hot chocolate machines as the knapsacks,
the students as the items. For each student, the number of cups they will drink
is the item weight and the happiness values are the... well, values. The only
differences are:

e There are two knapsacks/coffee machines (and each student gains different
values from each)

e Every student must be given a drink. In contrast, in the classic knap-
sack problem, you can choose to take or leave items.

The latter difference will be important in Subtask 4.

Instead of the classic knapsack, where our DP state is DP[ITEM] [CAPACITY], we
can have a DP state that is DP [ITEM] [LEFT_CAPACITY] [RIGHT_CAPACITY]. For each
state, our recurrence relation consists of the optimum of two choices - either we
make the student drink from the left or the right machine. We will also have to
be careful to check for students with strict preferences (in which case only one of
the options could be valid), and that students cannot drink from machines with
insufficient remaining capacity.

Python Subtask 3 Solution

L, R = map(int, input().split())
N = int(input())
dp = [[[None for i in range(R+1)] for j in range(L+1)] for k in
— range(N)]
students = []
for x in range(N):
students.append(list (map(int, input().split())))

def solve(idx, left, right):

if idx == N:
return O

© NZOI 2021

https://cses.fi/book/book.pdf
https://www.geeksforgeeks.org/0-1-knapsack-problem-dp-10/

11

12

13

14

15

16

17

18

19

20

21

22

23

NZIC 2021 R1 Solutions — Hot Chocolate 23

if dplidx] [left] [right] is not None:
return dp[idx] [left] [right]

dp[idx] [left] [right] = -999999999

if students[idx][1] > 0 and left >= students[idx][0]:
dplidx] [left] [right] = max(dp[idx] [1left] [right], solve(idx + 1,
— left - students[idx][0], right) + students[idx][1])

if students[idx][2] > O and right >= students[idx] [0]:
dplidx] [left] [right] = max(dplidx] [left] [right], solve(idx + 1,
— left, right - students[idx][0]) + students[idx][2])

return dpl[idx] [left] [right]

print(solve(0, L, R) if solve(0, L, R) > -1 else "Camp is cancelled")

Subtask 4 (Full Solution)

Our Subtask 3 solution is on the right track, but our DP formulation just requires
too many states, which will exceed both the time and memory limit. But are all
of those states really useful? Maybe we could get rid of some of them while still
maintaining our general algorithm.

Take, for example, this test case.

4 6
2 510
3 6 20

For that test case, one of our DP states would be DP[1] [0] [6]

This means that we are considering student number 1 (so student number 0 has
already been satisfied), and there is 0 and 6 capacity remaining in the left and
right machines respectively. But is this state actually useful? For there to be 0
capacity remaining in the left machine, student 0 must have taken 4 cups of hot
chocolate. But student 0 only requires 2 cups of chocolate! Therefore, this state
is really identical to the state DP[1][2] [6]. In fact, the only valid DP states for
considering student 1’s allocation are DP[1][2] [6] and DP[1][4] [4]. Those are
the cases where student 0 has drunk from the left and right machines respectively.
This leads us to an important observation. If we know the current number of stu-
dents who have already drank, N, and the remaining capacity in the left machine,
L, then the remaining capacity in the right machine is the sum of all N students’
required cups minus L. That is, the amount of cups drank from the right machine
is equal to the amount of cups students didn’t drink from the left machine.

© NZzOI 2021

© o] ~ [} wt =~ w [V =

e e
w N = (=}

—
IS

15

16

17

18

19

20

NZIC 2021 R1 Solutions — Hot Chocolate 24

This means we can completely discard one dimension from our DP state - we don’t
need the capacity of the right machine as it is dependent on our other DP states
anyway! Our DP state is simply dp [ITEM] [LEFT_CAPACITY]. To 'drink’ from the left
machine, we recurse into dp[i-1][1c - c] and to ’drink’ from the right machine,
we recurse into dp[i-1] [1c], since the left machine capacity won’t be changed if we
drink from the right machine. We also calculate the right machine capacity using
the method discussed previously in order to make sure there is enough capacity
left in that machine.

Python Full Solution

L,R = map(int, input().split())

N = int(input())

students = []

cups = [0]

dp = [[None]*(L+1) for x in range(N+1)]

for x in range(N):
students.append(list (map(int, input().split())))
cups.append(cups[-1] + students[-1][0])

def solve(idx, left):

if idx == N: return O

if dplidx] [left] is not None: return dp[idx] [left]

right = L + R - left - cups[idx]

dp[idx] [left] = -99999999999

if students[idx][1] > 0 and left >= students[idx][0]:
dplidx] [left] = max(dpl[idx] [left], solve(idx + 1, left -
— students[idx] [0]) + students[idx][1])

if students[idx] [2] > 0 and right >= students[idx] [0]:
dplidx] [left] = max(dpl[idx] [left], solve(idx + 1, left) +
< students[idx] [2])

return dpl[idx] [left]

print("Camp is cancelled" if solve(0, L) < O else solve(0, L))

© NZOI 2021

Big O complexity

Computer scientists like to compare programs using something called Big O nota-
tion. This works by choosing a parameter, usually one of the inputs, and seeing
what happens as this parameter increases in value. For example, let’s say we have
a list IV items long. We often call the measured parameter N. For example, a list
of length N.

In contests, problems are often designed with time or memory constraints to make
you think of a more efficient algorithm. You can estimate this based on the
problem’s constraints. It’s often reasonable to assume a computer can perform
around 100 million (100000 000) operations per second. For example, if the prob-
lem specifies a time limit of 1 second and an input of N as large as 100000,
then you know that an O(N?) algorithm might be too slow for large N since
100 000% = 10000 000 000, or 10 billion operations.

Time complexity

The time taken by a program can be estimated by the number of processor opera-
tions. For example, an addition a+b or a comparison a < b is one operation.

O(1) time means that the number of operations a computer performs does not
increase as N increases (i.e. does not depend on N). For example, say you have a
program containing a list of NV items and want to access the item at the i-th index.
Usually, the computer will simply access the corresponding location in memory.
There might be a few calculations to work out which location in memory the entry
1 corresponds to, but these will take the same amount of computation regardless of
N. Note that time complexity does not account for constant factors. For example,
if we doubled the number of calculations used to get each item in the list, the time
complexity is still O (1) because it is the same for all list lengths. You can’t get a
better algorithmic complexity than constant time.

O(log N) time suggests the program takes a couple of extra operations every time

25

NZIC 2021 R1 Solutions — Big O complexity 26

N doubles in size.! For example, finding a number in a sorted list using binary
search might take 3 operations when N = 8 but it will only take one extra
operation if we double N to 16. As far as efficiency goes, this is pretty good, since
N generally has to get very, very large before a computer starts to struggle.

O(N) time means you have an algorithm where the number of operations is directly
proportional to N. For example, a maximum finding algorithm max () will need to
compare against every item in a list of length N to confirm you have indeed found
the maximum. Usually, if you have one loop that iterates N times your algorithm

is O(N).

O (N?) time means the number of operations is proportional to N? . For example,
suppose you had an algorithm which compared every item in a list against every
other item to find similar items. For a list of N items, each item has to check
against the remaining N — 1 items. In total, N(IN — 1) checks are done. This
expands to N2 — N. For Big O, we always take the most significant term as the
dominating factor, which gives O(N?). This is generally not great for large values
of N, which can take a very long time to compute. As a general rule of thumb in
contests, O(N?) algorithms are only useful for input sizes of N < 10000. Usually,
if you have a nested loop in your program (loop inside a loop) then your solution
is O(N?) if both these loops run about N times.

More formally, it means there exists some constant ¢ for which the program takes at most ¢
extra operations every time N doubles in size.

© NZOI 2021

	Overview
	Emma's Socks
	Mind Reader
	Counting 3s
	Shocking calculation
	Hot Chocolate
	Big O complexity

