
NZIC Round 3 2018
Here is a detailed write up for each of the six problems from this
round. Questions spanned many difficulty levels, with this contest being
the first to introduce a take-home problem. The explanations below are
written by the problem writers themselves, except #3.

If you find these solutions and explanations beneficial, please write to
nzic@nzoi.org.nz and let us know. We will consider releasing explanations
and solutions for future contests only if we receive sufficient positive
feedback. A fair bit of work has gone into producing this document, so
it needs to be proven worthwhile.

Questions
This round consisted of six questions each with their own challenges.

1. Counting Threes: A loop and some formatted output.

2. Spaceships: An exercise in modular arithmetic and while loops.

3. Twilight Sparkle's Magic Spells: String matching.

4. Myrtle Rust: Graph traversal and Breath-First Search.

5. Bad Dragon: Brute force, combinations, and Dynamic Programming.

6. Mindy’s Challenge: Algorithmic complexity, thinking outside the
box, and graph theory.

Tips for next time
There are a few common errors that students make in all contests. These
can be easily avoided if students can

Read the question carefully

In the real world, it is very rare to be provided with a problem in a
simplistic form. Part of the challenge with these contests is reading and
understanding the question, then figuring out what algorithm will be
needed. Before submitting, check to make sure you have done everything
the question asks you to do.

A number of students wasted time on the very first "Welcome to the NZIC"
question. They were printing phrases with missing spaces, incorrect
capitalisation, or omitted punctuation. Computers are precision machines,
which means you have to get the answer exactly right for it to be marked
correct. Additionally, many students forgot about the -1 case in Myrtle

NZIC Round 3 Solutions © NZOI 2018

mailto:nzic@nzoi.org.nz

Rust. I.e. to output -1 if the network can never be infected. This was
clearly indicated in the question. There was even an example test case.

Test code

Many students submitted broken or syntactically incorrect code as initial
solutions. This wastes time while you wait for the server to run your
code. It is far more efficient to test it yourself.

Use the example test cases

Again, a lot of students waste time submitting code which does not give
the correct answer with the example cases given in the question. You can
save time by trying them out yourself before submitting.

Test using edge cases

However, the example cases are by no means a complete test. You need to
think of some other simple tests to make sure your program behaves. These
might include the lowest and highest numbers the program should be able
to handle as per the question. In the spaceships problem, a few students
did not test their code with cases where the total angle came to greater
than 720 degrees. For the Myrtle rust problem, a lot of student missed
out on full marks because of a very simple test case. This was the case
where there is only one nursery in the network (the case).

Take advantage of subtasks

Subtasks are here to help. Often by solving a subtask, it will help you
to arrive at the full solution. If not, you will at least get partial
points. Often, it is these partial points which put you ahead of the
rest. I will often see students submitting solutions where they have gone
straight for the full solution, but not quite made it and missed out on
any points. In these cases, it can be better to start with the easiest
subtasks and build up for there.

Looking at the scoreboard, it also appears that a number of students
arrive at some of the more difficult problems and simply stop. Sure, the
later problems might look difficult, but they usually have a subtask
which you might be able to do. In this contest, the Bad Dragon problem
had a subtask which required some nested loops to try any combination of
three skills then output the best combination. Many more contestants had
the potential to produce a solution such as the one shown for the writeup
of the first subtask to Bad Dragon. There was a similar situation for
the Myrtle Rust problem.

If you can get into the habit of doing these things, you will become much
faster at identifying bugs and be able to move on to the next question
sooner.

N = 1

NZIC Round 3 Solutions © NZOI 2018

Counting Threes
Problem Statement
Full problem at: https://train.nzoi.org.nz/problems/842

Dani likes counting threes. Given a list of numbers, tell Dani how many
of them are the number three.

Input

The first line has a single integer , the number of lines to follow,
where is guaranteed.

Each following line then contains a single integer less than 100 and
greater than or equal to 1.

Output

• If you don’t see any threes then output: This is a sad day

• If you count a single three then output: I found 1 three

• If you count many threes then output: I found ! threes (where is
replaced by the number of threes)

Python 3 Solution

Python 3 One Line Solution Just for Fun :)

N
0 ≤ N ≤ 20

x x

num_threes = 0
for _ in range(int(input())):
 if int(input()) == 3:
 num_threes += 1

if num_threes == 0:
 print("This is a sad day")
elif num_threes == 1:
 print("I found 1 three")
else:
 print("I found {} threes".format(num_threes))

(lambda N: print("This is a sad day" if N == 0 else "I found {}
 three{}".format(N, "s" if N > 1 else "")))([int(input()) for _ in
 range(int(input()))].count(3))

NZIC Round 3 Solutions © NZOI 2018

https://train.nzoi.org.nz/problems/842

C++ Solution

Java Solution

This was a student’s solution.

#include <iostream>
using namespace std;

int main()
{
 int N, num_threes = 0;
 cin >> N;

 for (int i = 0; i < N; i++) {
 int num;
 cin >> num;
 if (num == 3) num_threes++;
 }

 if (num_threes == 0) {
 cout << "This is a sad day" << endl;
 } else {
 cout << "I found " << num_threes << " three";
 if (num_threes > 1) cout << 's';
 cout << endl;
 }
}

import java.util.Scanner;

public class Main {
 public static void main(String[] args) {
 Scanner scan = new Scanner(system.in);
 int num = scan.nextInt();
 int threes = 0;
 for (int i = num; i > 0; i--){
 if (scan.nextInt() == 3){
 threes += 1;
 }
 }
 if (threes > 1){
 System.out.println("I found " + threes + " threes");
 } else if (threes == 1) {
 System.out.println("I found 1 three");
 } else {
 System.out.println("This is a sad day");
 }
 }
}

NZIC Round 3 Solutions © NZOI 2018

Spaceships
Problem Statement
Full Problem at: https://train.nzoi.org.nz/problems/841

You have landed a great internship with the corporation Galactic Flight
Controllers. You are given a relatively simple task: to determine
appropriate flight paths for two spaceships in orbit around a planet.
The mission objective is to catch a mysterious orbiting object.

For the object to be caught, it must be in between the two spaceships'
net launchers. More specifically, Alpha will launch a net that B will
catch. The missile must be in between the spaceships to be caught.

If the missile is at the same position as one of the spaceships, they
will catch the missile with a smaller net that does not need to be
launched.

You will be given a series of moves that the spaceships will carry out,
and from this determine if it is possible to catch the object. All
measurements are given in degrees around the planet.

Spaceship Alpha and Beta start at 0 and 90 degrees respectively. They
can then do two moves:

• BOOST - Moves Beta forwards by a certain angle.

• TRAVEL - Moves Alpha and Beta by a certain angle (synchronously).

Input

• A number of lines in the format ORDER ANGLE. For example, BOOST 90
means a boost of 90 degrees.

• The last line of orders will be END 0.

• Then, the location (in degrees) of the object is given as an
integer on another line.

Output

Output two space-separated integers with Alpha and Beta's coordinates in
degrees respectively. On a second line, either Missile located. or
Missile un-locatable.

Subtasks

• 25%: only TRAVEL commands will be given, and the spaceships will
not travel past 360 degrees.

• 25%: only TRAVEL commands will be given.

NZIC Round 3 Solutions © NZOI 2018

• 50%: no further restrictions.

There will be at most 100 lines of input.

Solution
To read input for this program, a while loop is the best choice. This
way you can check with each iteration when the loop should end with the
‘END 0’ command given. This structure is shown below (in C++):

int angle;
string request;

cin >> request >> angle;

while (request != "END")
{
 // do stuff with request and angle
 cin >> request >> angle;
}

Keep in mind this program doesn’t actually do anything with the request
and angle yet! That’s our next step.

Subtask 1

For subtask 1, we can assume that all requests are “TRAVEL”. So we just
need to add the value of angle to the starting angles of spaceship alpha
and beta. We modify our program as follows:

int angle;
string request;

int alpha = 0;
int beta = 0;

cin >> request >> angle;

while (request != "END")
{
 alpha += angle;
 beta += angle;
 cin >> request >> angle;
}

After we have finished the while loop, we need to:

• Print out alpha and beta’s angles

NZIC Round 3 Solutions © NZOI 2018

• Check whether the missile is in between alpha and beta’s
coordinates, and print the result.

Note that we do not need to deal with the case of alpha or beta over 360
degrees in this subtask.

The program after the while loop continues as follows:

int missile;
cin >> missile;

cout << alpha << " " << beta << endl;

if ((alpha < missile && beta > missile) ||
(alpha == missile || beta == missile)) // check if missile is in
between OR equal to the alpha and beta coordinates.
{
 printf("Missile located.\n");
}
else
{
 printf("Missile unlocatable.\n");
}

The first subtask is now complete!

Subtask 2

This subtask requires a slight modification to our original program: we
now have to account for the case where alpha or beta’s coordinates are
over 360 degrees.

We don’t need to adjust the input while loop, only the code afterwards.
After the input loop, alpha and beta could be any number over 360! To
convert it back into a number from 0 to 360, we use modular arithmetic. A
modulo operator will take the remainder of a division, as so:

5 % 3 = 2

10 % 10 = 0

And so on.

So all we need to do is perform modulo 360 on alpha and beta! Our code
after the while loop is as follows:

alpha %= 360; // equivalent to alpha = alpha % 360;
beta %= 360;

int missile;

NZIC Round 3 Solutions © NZOI 2018

//… (same as before)

However, this is not all we need to do to finish subtask 2. We need to
deal with the situation where beta is actually less than alpha: for
instance, after the modulo operator, beta = 80 and alpha = 350. In this
case, a missile is between the ships if it is between 350 and 360
degrees, OR if it is between 0 and 80 degrees. Obviously our previous
check statement does not cover these cases.

So we add another section to our check statement as follows:

if ((alpha < missile && beta > missile) ||
 (alpha == missile || beta == missile) ||
 (missile < beta && alpha > beta) ||
 (missile > alpha && alpha > beta))
// check if missile is in between OR equal to the alpha and beta
coordinates.

Now our code is complete and will fulfill subtask 2.

Subtask 3

Subtask 3 incorporates the BOOST command, which requires us to change
our input loop. We need to add in a check for the command to determine
if it is BOOST or TRAVEL, and then add the angle value to beta or alpha
and beta respectively.

int angle;
string request;

int alpha = 0;
int beta = 0;

cin >> request >> angle;

while (request != "END")
{
 if (request == "BOOST")
 {
 beta += angle;
 }
 else if (request == "TRAVEL")
 {
 beta += angle;
 alpha += angle;
 }

 cin >> request >> angle;

NZIC Round 3 Solutions © NZOI 2018

}

Now subtask 3 is complete - and we have finished the problem! The
complete solution in C++ and Python is available below.

If you have any further questions - on this problem or other coding-
related questions - feel free to email me at ats391@gmail.com and ask.
Hope you enjoyed the problem!

NZIC Round 3 Solutions © NZOI 2018

C++ Solution
#include <iostream>
#include <cstring>

using namespace std;
int main ()
{
 int alpha, beta;
 alpha = 0;
 beta = 90;

 int angle;
 string request;
 cin >> request >> angle;
 while (request != "END")
 {
 if (request == "BOOST")
 {
 beta += angle;
 } else if (request == "TRAVEL")
 {
 beta += angle;
 alpha += angle;
 }
 cin >> request >> angle;
 }
 beta %= 360;
 alpha %= 360;

 int missile;
 cin >> missile;
 cout << alpha << " " << beta << endl;
 if ((alpha < missile && beta > missile) ||
 (alpha == missile || beta == missile) ||
 (missile < beta && alpha > beta) ||
 (missile > alpha && alpha > beta))
 {
 printf("Missile located.\n");
 }
 else
 {
 printf("Missile unlocatable.\n");
 }

 return 0;
}

NZIC Round 3 Solutions © NZOI 2018

Python 3 Solution
action, angle = input().split()
alpha, beta = 0, 90

while action != "END":
 angle = int(angle)

 if action == "TRAVEL":
 alpha += angle
 beta += angle
 elif action == "BOOST":
 beta += angle

 action, angle = input().split()

alpha %= 360
beta %= 360

missile = int(input())

print(alpha, beta)
if alpha <= missile <= beta or missile <= beta <= alpha or beta <= alpha <=
missile:
 print("Missile located.")
else:
 print("Missile unlocatable.")

NZIC Round 3 Solutions © NZOI 2018

Twilight Sparkle's Magic Spells
Problem Statement
Full problem at: https://train.nzoi.org.nz/problems/836

Twilight Sparkle is researching some magic spells. A spell is a non-empty
finite sequence of Apples, Bananas, or Ciwifruit.

Spells can be safe or unsafe. An unsafe spell contains one or more of
the following patterns:

Help Twilight determine whether a spell is safe or unsafe.

Input

The first line of input will contain a single integer, ,
representing the length of the spell. The next line will contain a string
of letters, each either A, B, or C. This is the spell itself.

Output

Output SAFE if the spell is safe; otherwise UNSAFE.

Explanations

• BAAAAAB is unsafe, as it contains an Appleboom.

• AAAACA is safe. While it has five Apples, the Ciwifruit in between
means that it can't form an Appleboom.

• ABBABBA is unsafe, as it contains two (overlapping) Stockholm
Syndromes.

• ABBAAAAA is also unsafe, as it contains both a Stockholm and an
Appleboom. They don't cancel out!

• CBACBA is safe. It has the same fruit as a Double Rainbow, but the
fruit are in the wrong order.

Pattern Name

AAAAA Appleboom

ABBA Stockholm Syndrome

ABCABC Double Rainbow

0 < N ≤ 100

N

NZIC Round 3 Solutions © NZOI 2018

https://train.nzoi.org.nz/problems/836

Analysis
The first step to understand any problem is to break it down into smaller
problems. Rather than think about finding all three patterns: what would
we do if it was just one pattern we were looking for?

The easy way

Most languages have some inbuilt way of finding substrings. A substring
is just a string of characters which is contained within another string.
In Python, this function is called find(). In this case, find() returns
the index at which a substring is found or -1 if it is not found. If one
of the patterns is contained in a spell, we know the spell must be
UNSAFE. Therefore, we want to print UNSAFE if find() does not return -1.

Suppose that find() does return -1. In this case, we don’t know if the
spell is SAFE or UNSAFE because we haven’t checked the other patterns
yet. We can use a loop to repeat the above step once for each pattern. If
we check all patterns and discover none of them present in the spell,
then the spell must be SAFE.

This method is implemented as the Python 3 Solution below.

The hard way

Maybe you can’t remember what the find() equivalent is for your language,
or you just want an extra challenge? In this case, we don’t have the
luxury of a way to easily determine if a pattern is contained in a spell.
This might make the problem seem a lot harder, but we can use the same
"break it down" approach as before.

A neat trick you can use when writing code is to pretend you do have a
magical find() function which does what you want. In this case, we would
solve this problem the easy way (as above). Then, all we need to do is
create our own find() function! Let’s define what this function should
do… It must return some number if a pattern is found or -1 if it is not
found.

Breaking it down even more, we can think of our pattern and spell each as
a list of characters. Then, using a loop, we can determine if the pattern
is present in the spell. Specifically,

1. Loop through each character s in spell.

2. Check if this character is the first character in our pattern.

a. If it is, then move to the next character in spell and check if
this is the second letter, and so on.

i. If we run out of character in pattern, then we have found our
pattern, so return some number.

NZIC Round 3 Solutions © NZOI 2018

b. If it is not the first character in our pattern, then move to
the next character in spell and repeat from step 2.

3. If we reach the end of spell without detecting a pattern, return
-1.

Your find function might look something like this…

Python 3 Solution

If we want to use our own find() function, then replace the line

with

Python 3 One Line Solution Just for Fun :)

def find(string, pattern):

 i = 0
 for s in string:
 if s == pattern[i]:
 if i == len(pattern) - 1:
 return i

 i += 1

 return -1

N = int(input())
spell = input()

patterns = ["AAAAA", "ABBA", "ABCABC"]

is_safe = True
for pat in patterns:
 if spell.find(pat) != -1:
 is_safe = False
 break

print("SAFE" if is_safe else "UNSAFE")

 if spell.find(pat) != -1:

 if find(spell, pat) != -1:

print("SAFE" if input() and all(map(lambda a: not (a[0].find(a[1]) + 1),
 zip([input()] * 3, ["AAAAA", "ABBA", "ABCABC"]))) else "UNSAFE")

NZIC Round 3 Solutions © NZOI 2018

Java Solution

This was a student’s solution.

import java.util.Scanner;

public class Main {
 public static void main(String[] args) {
 Scanner scan = new Scanner(system.in);
 boolean isUnsafe = false;

 int N = scan.nextInt();
 String spell = scan.next();

 for (int i = 0; i < N; i++) {
 if ((i + 4 <= N && spell.substring(i, i + 4).equals("ABBA")) ||
 (i + 5 <= N && spell.substring(i, i + 5).equals("AAAAA")) ||
 (i + 6 <= N && spell.substring(i, i + 6).equals("ABCABC")))
 {
 isUnsafe = true;
 break;
 }
 }

 if (isUnsafe) {
 System.out.println("UNSAFE");
 } else {
 System.out.println("SAFE");
 }
 }
}

NZIC Round 3 Solutions © NZOI 2018

http://system.in

Myrtle Rust
Problem Statement
Full problem at: https://train.nzoi.org.nz/problems/847

Myrtle Rust, a wind-borne fungus which effects native NZ plants, has
made its way into a nursery in the upper North. Every morning, trucks
carrying plants (which might be infected) leave their starting nursery
and make it to a corresponding destination nursery at the end of the day.
If the truck contains an infected plant, all plants in the destination
nursery will become infected overnight. This means all the trucks which
leave form this nursery the next day will carry infected plants!

Given a description of all nurseries and how plants are moved between
them, write a program to calculate how many days it will take for North
Island nurseries to become completely infected with Myrtle Rust.

Input

The first line will contain three numbers separated by a single space.
The first, , is the number of North Island nurseries, the second, , is
the number corresponding to the nursery which became infected first, and
the last, , is the number of trucks in the nursery network. Note that
nurseries are numbered from 0 up to .

What follows are lines, one for each truck. Each line will contain two
space-separated integers. The first, , is the number corresponding to
the nursery in which the truck starts at, and the second, , is the
truck’s destination nursery. Every nursery will be connected to the
network via a truck.

Output

• Print a single number representing how many days it takes for the
North Island to become infected with Myrtle Rust.

• If the North Island never becomes fully infected with Myrtle Rust
then print −1.

Subtasks

• (60%) The truck's delivery routes form a single chain of
nurseries. E.g. Truck 0 goes from nursery 1 to nursery 2 and truck
1 goes from nursery 2 to nursery 3  
to form a continuous open-ended chain.

• (40%) The full problem.

N Z

T
N − 1

T
s

d

NZIC Round 3 Solutions © NZOI 2018

https://train.nzoi.org.nz/problems/847

Analysis
When a question talks about "connections" or a "network", it strongly
indicates the presence of a graph problem. However, the first subtask
does not require any knowledge of graphs to produce a solution.

What’s a graph?

Graphs are a way of representing connections between things. They are
made of nodes (the items or values) and edges (the arrows between items
and values). If you have not heard these terms before, check out this
introduction to graphs: https://youtu.be/82zlRaRUsaY?t=46s

A common mistake

Many people failed the case where . If there is only one nursery,
and it is infected to begin with, then the correct answer is that it
takes zero days for all nurseries to become infected; not one day. Many
students missed the full solution because of this single case :(.

Because this simple case was only checked for the first 60% subtask, a
full solution which failed this case was able to get 40%.

Tip: Think of some simple edge cases and test them on your program before
submitting.

Subtask 1

For this subtask, we know the nurseries are connected in a single chain.
In other words, each nursery can only have one or two delivering/
departing trucks. Let’s look at the first example case given in the
question…

Drawing pictures can be super helpful. We can draw this as:

where 0, the blue circle, is the first infected nursery and the arrows
show truck deliveries between nurseries. So how many days does it take
for all nurseries to become infected? Let’s break it down…

1. Initially, on day 0, nursery 0 is infected.

N = 1

4 0 3
0 1
1 2
2 3

NZIC Round 3 Solutions © NZOI 2018

https://youtu.be/82zlRaRUsaY?t=46s

2. After the first day, a truck traveling to nursery 1 carries
infected plants, causing 1 to be infected.

3. After the second day, a truck traveling from nursery 1 to nursery 2
infects nursery 2.

4. Finally, on the third day, a truck going to nursery 3 causes it to
become infected.

5. Since nursery 3 was the last nursery to be infected, it took three
days to infect the whole network.

So, one solution might be to start at the initially infected nursery and
follow the arrows until we reach the end. The number of days is then the
number of arrows we followed. However, there is one case we are missing.

Let’s consider the third example case given in the question…

which can be drawn as

This is very similar to the first example, except that the initially
infected nursery is 2. If we apply our strategy "follow the arrows" we
will end up at nursery 3. However, not all the nurseries are infected. In
fact, no matter how much time passes, the whole network will never be
infected. Therefore, we must print -1 to indicate this.

Overall, for the first subtask, we require three steps

1. Follow the arrows from the initially infected nursery and count the
number of arrows followed as the number of days.

2. When there are no more arrows to follow, check if we have infected
all the nurseries in our network.

3. If all nurseries are infected then print the days. Otherwise, print
-1.

Note: Take a look at the below example…

4 2 3
0 1
1 2
2 3

NZIC Round 3 Solutions © NZOI 2018

We need to be careful when the infected nursery has two trucks leaving
from it. In such a case, we must follow both arrows and then choose the
longest chain as the number of days. It would take 2 days in this case,
not 1.

A solution for subtask 1, in Python 3, might look like this:

Notice how we store the connections between nurseries. This means we can
get a list of the destinations for all trucks leaving from some nursery
A with the statement connections[A].

Subtask 2

For the remaining part of the problem, the number of connections per
nursery is unrestricted. The second example from the question was

N, Z, T = map(int, input().split())

Read in connections between nurseries into a list of lists
connections = [[] for _ in range(N)]
for i in range(T):
 s, d = map(int, input().split())
 connections[s].append(d)

Start at Z and follow the first arrow while keeping track of length
cur = Z
length_1 = 0
while len(connections[cur]) != 0:
 cur = connections[cur][0]
 length_1 += 1

Check for a second arrow. If it exists, follow it and keep track of length
length_2 = 0
if len(connections[Z]) == 2:
 length_2 = 1
 cur = connections[Z][1]
 while len(connections[cur]) != 0:
 cur = connections[cur][0]
 length_2 += 1

If the total length from following both chains is the same as the total
number of nurseries then print the largest of the two lengths
if length_1 + length_2 != T:
 print(-1)
else:
 print(max(length_1, length_2))

NZIC Round 3 Solutions © NZOI 2018

Which can be drawn as

In this case, the network takes one day to become infected.

Breadth-First Search

We can use the Breadth-First Search (BFS) algorithm to traverse our graph
and keep track of the distance from our starting nursery. BFS is a common
technique for graph problems and there are heaps of resources online
about it. Check it out.

4 1 5
1 3
1 2
0 2
1 0
2 0

NZIC Round 3 Solutions © NZOI 2018

Python 3 Solution
Read in connections between nurseries
connections = [[] for _ in range(N)]
for i in range(T):
 s, d = map(int, input().split())
 connections[s].append(d)

Keep track of which nurseries have been infected
infected = [False for _ in range(N)]

BFS
Keep a list of nurseries to visit next. Start at the initially infected
nursery which is 0 distance from itself.
todo = [(Z, 0)]
max_dist = 0
while len(todo) != 0:
 cur, dist = todo.pop(0)
 if infected[cur]:
 continue

 infected[cur] = True
 max_dist = max(max_dist, dist)

 for n in connections[cur]:
 # Increase the distance from the starting nursery by one
 todo.append((n, dist + 1))

if False in infected:
 print(-1)
else:
 print(max_dist)

NZIC Round 3 Solutions © NZOI 2018

Bad Dragon
Problem Statement
Full Problem at: https://train.nzoi.org.nz/problems/840

You are the knight in shining armour ready to rescue your princess, but
she is guarded by the big bad dragon who is very scary. So scary that
you do not dare to face the dragon directly. Luckily, the wizard in your
party can cast a spell to make the big bad dragon go to sleep for a
certain amount of time. The big bad dragon is not scary when it's
sleeping.

Given this knowledge, you have decided to plan and make the best use of
time that the dragon is asleep and maximize the amount of hit point
damage you can deal to the dragon before it wakes up.

The wizard can sleep the dragon for T seconds. You have 100 mana
initially and 𝑆 skills at your disposal. Each skill costs 𝑚$ mana and
takes 𝑡$ seconds to cast and deals ℎ$ hit points of damage. Each skill can
only be used once. In addition, depending on your mood of the day, you
either regenerate 1 or 0 mana per second. However, your mana
can never exceed the maximum capacity of 100.

The damage of a skill is dealt at the end of its cast duration and the
mana is used at the start of a cast. For example, suppose you
regenerate 1 mana per second and have a skill with 10 seconds of cast
time. If you cast your skill as soon as the wizard sleeps the dragon,
you will deal hit point damage at exactly 10 seconds after the wizard
has cast their spell. You will also regenerate up to 10 mana in this
time, but you must have had sufficient mana to have cast the skill
initially.

You want to know, after T seconds, what is the maximum amount of hit
points you can deal to the dragon.

Input

• The first line contains two integers 1 <= T <= 100, 1 <= S <= 100, R =
0	or	1, which are respectively: the numbers of seconds your wizard
can sleep the dragon, the number of skills you have available, and
the mana regenerated per second depending on your mood.

• The next 𝑆 lines each contain three integers 0 <= m1 <= 100, 1 <= t1 <
= T, and 1 <= h1 <= 1000 which describes the mana cost, seconds to
cast, and the amount of hit point damage skill 𝑖 does.

NZIC Round 3 Solutions © NZOI 2018

Output

Please output one integer on one line with its value being the maximum
amount of hit points you can deal to the dragon after 𝑇 seconds.

Keep in mind this question takes a while to be tested on the server.
Don't waste time waiting for it to complete. Move to the next question.

Subtasks

• Subtask 1 (25 points): Each skill costs exactly 33 mana and there
is no regeneration.

• Subtask 2 (25 points): You have access to 20 and only 20 skills and
there is no regeneration.

• Subtask 3 (25 points): your skills cost 0 mana.

• Subtask 4 (50 points): No additional limits.

Note: You always start with 100 mana and as you are not the most
energetic knight in the kingdom you do not have to be casting a skill
for the entire duration that the dragon is asleep for. Given you
optimise the number of hit points dealt you're free to take a break for
as long as you want.

Analysis
Essentially the task is to utilise a set of skills that can fit within
the time and mana limits that maximizes the hit point value.

Mana can either regenerate at 1 per second or no regeneration. Luckily
60% of the points do not depend on this and for subtasks 1, 2, and 3 we
can disregard regeneration.

A couple of observations to start with

• There’s no need to order the use of skills, using skill A before or
after skill B does not change the hit point outcome, mana cost, or
time cost.

• Many of the subtasks have unique restraints enabling you to solve
those via unique methods and gain partial scores (this is extremely
important to maximize your score should you not arrive at a full
solution).

• There’s essentially two choices for each skill: use it or don’t use
it.

NZIC Round 3 Solutions © NZOI 2018

Let’s look at the subtasks

1. For the first subtask: you have 100 mana that does not regenerate
and all skills cost 33 mana. From this we know we can only use a
maximum of 3 skills.

a. Assuming we will use 3 skills, then we can simply try all
combinations of 3 skills and record down the highest hit point
value, this results in O((number − of − skills)C) time complexity.

b. But, what if we only had time to use 2 skills or even just 1
skill? To resolve this you could have special case and tried
again to try all combinations of 2/1 skill(s). However, a
simple trick is to add 2 skills with mana cost 0, time cost 0,
and hit point damage of 0. E.g. If we only use 2 skills then
the 3rd skill can be one of the newly added “blank” skills.

Brute force solution assuming 33 mana for each case

T, S, R = map(int, input().split())

if R == 1:
 # We don't know how to do this so quit now
 exit()

skills = []
for i in range(S):
 # Get skills as a tuple of the form (mana, time, damage)
 skills.append(tuple(map(int, input().split())))

Add two empty skills so that having less than 3 is an option
skills.extend([(0, 0, 0)] * 2)
S += 2 # Account for extra skills

def damage(T, skills, a, b, c):
 """Given a time T and a list of skills, choose skills a, b, c and
 return the total damage gained. If the skills form an invalid
 combination (i.e. take too much time) then reutrn 0."""

 # Sum up all mana, time, and damage for the combination a, b, c
 mana = sum(skills[i][0] for i in (a, b, c))
 time = sum(skills[i][1] for i in (a, b, c))
 dam = sum(skills[i][2] for i in (a, b, c))

 if time <= T:
 return dam

 return 0

best_damage = 0
for a in range(S):
 for b in range(S):
 for c in range(S):

NZIC Round 3 Solutions © NZOI 2018

 # We can't use the same skill more than once
 if a == b or b == c or a == c:
 continue

 # Check if this combination is better
 best_damage = max(best_damage, damage(T, skills, a, b, c))

print(best_damage)

2. For the second subtask: you always have 20 skills.

a. Often, it is useful too look out for small limits (less than
25) for problems or sub-problems that have binary choices. In
this case, the choice is: do we use a skill or do we not use a
skill. Binary means two and there are only two things to
choose from.

b. Given this observation, why don't we try every combination of
skills?

c. An analysis on the complexity of doing so gives us a time
complexity of O 2EFGHIJ − of − skills ~ = 	1	million. This should be
just enough to run in 4 seconds for Python. In contrast, an
efficient, optimised, simple brute force in C or C++ can
handle up to 100 million operations per second.

3. For the 3rd subtask, we remove the dimension of mana from the
problem and it reverts to a classic knapsack problem.

a. DP, or Dynamic Programming, isn't straight forward to explain,
but for your interest you may want to read:

https://en.wikipedia.org/wiki/Knapsack_problem

b. Essentially the "weight" is the time taken, and the "value" is
hit point damage.

c. For an full explanation of the DP solution for this problem,
please refer to the subtask 4 solution.

Recursive knap-sacks implementations were unfortunately too slow in
Python. The below student submission is a good example of a
recursive knap-sack. Some people find recursive solutions easier to
understand than iterative solutions. Comments have been added to
their solution.

A very nice student knap-sack solution using recursion. This solution
received 40% but could have gotten 80% if implemented using a table
T, S, R = list(map(int, input().split()))

skills = []
for _ in range(S):

NZIC Round 3 Solutions © NZOI 2018

 skills.append(tuple(map(int, input().split())))

Recursive knap-sack
def knap(mana, time, n):
 # Base case
 if n == -1:
 return 0

 if skills[n][0] > mana or skills[n][1] > time:
 # We don't have enough time or mana so don't take the n'th skill
 return knap(mana, time, n - 1)
 else:
 # Pick the best option between choosing the n'th skill and not
 # choosing it
 choose = skills[n][2] + \
 knap(mana-skills[n][0], time-skills[n][1], n - 1)
 dont_choose = knap(mana, time, n - 1)
 return max(choose, dont_choose)

Start with 100 mana
print(knap(100, T, S - 1))

4. For the last subtask, we have the classical 2 dimensional knapsack
with a twist - that one of the "weights" can regenerate.

a. To set up our state, let’s define an array dps[TIME][MANA] =
highest amount of damage that can be done in TIME seconds and
having MANA remaining.

b. First, let’s ignore mana regen: how would these states
transition from one to another? We go back to our observation
about the usage of skills: we can either use or not use a
skill.

So, given any dps[TIME][MANA], if we use a skill 𝑠$ which has
a time 𝑡$, some mana 𝑚$, and damage 𝑑$, then move to another
state dps[TIME + 𝑡$][MANA - 𝑚$] and see if dps[TIME][MANA] + 𝑑$
will become the new highest damage for that state (After using
the skill: New time = TIME + time used for skill, New mana =
MANA - mana used for skill).

In pseudo code:

dps[TIME+t_i][MANA-m_i] = max(dps[TIME][MANA] + d_i, dps[TIME+t_i][MANA-m_i])

c. Now if we want to know what's the highest damage dealable at
time 𝑇, we just want to know what is dps[𝑇][any], as we can
have any mana remaining at the end.

NZIC Round 3 Solutions © NZOI 2018

How can we get this value? We can do this either recursively
or iteratively. One observation to note is on iterative
solutions, you do not actually have to record whether or not
you've used a skill or not should you start from the end and
move towards the front. For example, consider a skill that
takes 2 seconds and 𝑇 = 5. At 5 sec we consider moving from 3
sec -> 5 sec, then we look at 4 sec (2->4), 3 sec (1->3), 2
sec (0->2) - as you can see there are no chance that you can
use a skill twice.

d. How do we incorporate mana regeneration? We need to ensure we
have enough MANA to use a skill when moving from
dps[TIME][MANA] -> dps[TIME + 𝑡$][MANA - 𝑚$]. Thus, we can add
the time it takes the skill to be casted onto the final mana
outcome.

I.e. Instead of dps[TIME][MANA] -> dps[TIME + 𝑡$][MANA - 𝑚$],
now we move from dps[TIME][MANA] -> dps[TIME + 𝑡$][MANA - 𝑚$ +
𝑡$]. This observation makes up the last 20% of the problem.

Use subtasks as a hint

Sometimes the solution is not just in the task but also the limitations.
It is helpful to have a good understand of algorithm complexity for
these subtasks as each limitation gives you a hint to a solution.

• Being only able to use 3 skills meant you could have 3 nested loops
going through a maximum of 100 skills.

• Having only 20 skills meant you could check to use or not use each
one.

• When skills cost 0 mana, we can just pretend that the mana limit
does not exist and simplify our problem.

What can lead you to think Dynamic Programing (DP)? Ask yourself:

• Can we simplify the state into a table (dps[TIME][MANA]) that fits
into memory?

• Is the transition between states, i.e. dps[TIME][MANA] -> dps[TIME
+ 𝑡$][MANA - 𝑚$ + 𝑡$], straight forward?

o One tip is if you can multiply all the state bounds and
transition range together to fit within a ballpark complexity
then you could give this a thought (in this case, TIME x MANA
is the state and there's only 2 transition choices).

Overall, if DP is a relatively new concept then it can be quite
difficult to grasp, but with more exposure and experience to the field
they become much easier to spot and disseminate. So many common problems

NZIC Round 3 Solutions © NZOI 2018

can boil down to a simple DP solution, so it’s worth investing your time
in getting to know if a bit better.

NZIC Round 3 Solutions © NZOI 2018

C++ Solution
#include <cstdio>
#include <algorithm> // for max function

using namespace std;

const int MAX_TIME = 123, MAX_MANA = 123;

int t, s, r;

// this stores the highest amount of damage that can be dealt in
// dps[time_in_seconds][mana_remaining]
int dps[MAX_TIME][MAX_MANA];

int main() {
 scanf("%d%d%d", &t, &s, &r);

 for (int i = 0; i < s; i++) {
 int mana, time, dmg;

 scanf("%d%d%d", &mana, &time, &dmg);

 // by iterating from back to front we ensure a skill is only used
 // once
 for (int j = t - time; j >= 0; j--) {
 for (int k = 100; k >= 0; k--) {

 // ensure we currently have enough mana to cast this skill
 if ((k - mana) >= 0) {
 // checks if using skill i from dps[j-time][k-mana]
 // results in higher damage than what we have so far
 dps[j + time][min(100, k - mana + r*time)] =
 max(dps[j + time][min(100, k - mana + r*time)],
 dps[j][k] + dmg);
 // r*time is the amount of mana regenerate, we must make
 // sure we do not generate more than the maximum amount
 // of mana
 }
 }
 }
 for (int j = 1; j < t; j++) {
 for (int k = 100; k >= 0; k--) {
 // do nothing this second
 dps[j][min(100, k + r)] =
 max(dps[j][min(100, k + r)], dps[j - 1][k]);
 }
 }
 }
 for (int i = 100; i > 0; i--) {
 dps[t][i - 1] = max(dps[t][i - 1], dps[t][i]);
 }
 int ans = dps[t][0];

NZIC Round 3 Solutions © NZOI 2018

 // 100 mana is cap mana
 printf("%d\n", ans);
 return 0;
}

Python 3 Solution
MAX_TIME, MAX_MANA = 123, 123

t, s, r = map(int, input().split())

Create a list of lists (look up list comprehensions if the notation is
confusing) which stores the highest amount of damage that can be dealt in
dps[time_in_seconds][maina_remaining]
dps = [[0 for _ in range(MAX_TIME)] for _ in range(MAX_MANA)]

for i in range(s):

 # Get the next skill
 mana, time, dmg = map(int, input().split())

 # By iterating from back to front we ensure a skill is only used once
 for j in range(t - time, -1, -1):
 for k in range(100, -1, -1):

 # Ensure we currently have enough mana to cast this skill
 if k - mana >= 0:
 # Checks if using skill i from dps[j - time][k - mana]
 # results in higher damage than what we have so far
 dps[j + time][min(100, k - mana + r*time)] = \
 max(dps[j + time][min(100, k - mana + r*time)], \
 dps[j][k] + dmg)
 # r * time is the amount of mana regenerate, we must make
 # sure we do not generate more than the maximum amount of
 # mana

 for j in range(1, t):
 for k in range(100, -1, -1):
 # Do nothing this second
 dps[j][min(100, k + r)] = \
 max(dps[j][min(100, k + r)], dps[j - 1][k])

for i in range(100, 0, -1):
 dps[t][i - 1] = max(dps[t][i - 1], dps[t][i])

100 mana is cap mana
print(dps[t][0])

NZIC Round 3 Solutions © NZOI 2018

Mindy’s Challenge
Problem Statement
Full problem at: https://train.nzoi.org.nz/problems/846

Mindy has a collection of wonders, each meticulously labelled with a
unique identification number starting from 0. However, not only has Mindy
given two items the same ID by mistake, little gremlins have changed some
IDs to match numbers which have already been assigned a wonder in the
collection. What a mess! Luckily, Mindy knows that she has items in
her collection where the maximum assigned ID number is . She has
asked for your help to track down just one of the duplicate IDs.

Given a list of ID numbers, develop an algorithm to find one of the
duplicate IDs given the constraints below. It doesn't matter which
duplicate you find if there are multiple to choose from.

1. Use a template* given below to read the ID list/array into memory.
This part has no associated points and is not considered as part of
your algorithm.

2. Use extra space**. Explained more below.

3. Do not change the input array referred to as ids. Consider it as
read-only.

4. You are limited to accesses of the list/array. Therefore,
your algorithm should run in time.

Warning: this problem is not the same as the Mindy one in Round 2.

*If your language is not available, you may write your own template which does the equivalent.

**Beware that you cannot use data structures such as sets or dictionaries as these allocate extra
memory behind the scenes. Some sorting algorithms do this as well. However, you should not require any
of these things to solve this problem.

Input

The integer on a single line followed by lines each containing one
ID.

Output

One of the duplicate ID numbers on a single line. There will always be at
least one duplicate.

N
N − 2

O(1)

O(N)
O(N)

N N

NZIC Round 3 Solutions © NZOI 2018

https://train.nzoi.org.nz/problems/846

Analysis
An explanation of notation is provided with the question above. If it
still doesn’t make sense, try this link: https://rob-bell.net/2009/06/a-
beginners-guide-to-big-o-notation/

Essentially, we need to find a duplicate number in a list. What makes
this problem hard is not the problem itself, but rather the constraints
on the solution. Some students may have recognised this problem from the
previous round. However, there are some differences. The first major
difference is that numerous duplicates are allowed in a list. The second
major difference is with the solution constraints. Specifically, the
solution must:

1. Use extra space;

2. Not change the input list (i.e. the list is read-only); and

3. Be limited to accesses of the array.

The first constraint instantly rules out many obvious solutions. For
example, you might think to go through each item in the list checking if
you have already seen that item or not. However, to remember all the
previously seen numbers requires storage in a list/array, a set, or some
other data structure. All of these storage methods require extra memory
space which is proportional to the number of items in our list. We are
only allowed to use a fixed amount of storage for our algorithm.

Many people tripped up on the second constraint. A common attempt
involved using the sign of each number to indicate if it had already been
seen or not. However, changing the values of items in the input list is
not allowed here. This constraint differs from the question in the
previous round.

Finally, your solution must complete using only accesses of the
list. This puts nested loops out of the question.

One possible solution is shown below, in C++ and Python 3, along with a
detailed explanation later in this document.

Solution Explanation
Looking at the code below it might seem a bit magical. That’s because
there are a few key observations that someone must make to arrive at this
solution.

Take the first sample case with the list [2, 8, 1, 0, 7, 6, 8, 5, 4, 3]
for example. We can draw this where the next item in this list is found

O

O(1)

O(N)

O(N)

NZIC Round 3 Solutions © NZOI 2018

https://rob-bell.net/2009/06/a-beginners-guide-to-big-o-notation/
https://rob-bell.net/2009/06/a-beginners-guide-to-big-o-notation/

by going to the index position corresponding to the current value e.g.
next_item = ids[current_item]. It would look like this…

Where the index is the position of each item in our list and the value is
the number at that position in our list. Drawing it using arrows like
this is called a graph, made of nodes (the values) and edges (the
arrows). If you have not heard these terms before, check out this
introduction to graphs: https://youtu.be/82zlRaRUsaY?t=46s.

There are some interesting properties we can notice about a graph made
from the list of IDs.

1. There is always at least one duplicate node. This was given to you
in the question. However, there is an important connection to our
graph visualisation as we will see later.  
 
For interest sake, it wouldn’t have mattered if the question had
told you this or not. We can prove this is the case… As stated in
the problem, the list only contains values between and .
This means every item will point to a valid index in the list.
Also, since we have an item at every position from up to ,
then not all the items can be assigned a unique value. We have at
least one more item than we have possible values. i.e. there is at
least one duplicate.

2. There is always at least one loop. Since every item in the list
contains a value between and , then the next value in our
chain will always be at some valid index in the list. Therefore, we
are guaranteed to be stuck in a loop at some point.

3. One duplicate is in a loop, and one is outside a loop. We can
visualise this better by redrawing the graph from above without the
list structure and index labels.

0 N − 2

0 N − 1

0 N − 2

NZIC Round 3 Solutions © NZOI 2018

https://youtu.be/82zlRaRUsaY?t=46s

 
The circular bit on the left we’ll call the ‘loop' and the long bit
on the right we’ll call the ‘tail’. Look at the two (8) nodes. Both
of these point to the (4) node. But how do we know this will be the
case for every possible list? And if it is the case, how do we find
both the loop and the tail parts of the graph? The key lies in the
final observation…

4. The last node cannot be part of a loop. This is perhaps the most
important observation. We know that every node from index up to
 has a value between and . Notice that there is one less
available value than we have indices. In fact, the index which is
missing from the available values is the last one, a.k.a. .
This means that no item in the list can have the value and,
therefore, no node can point (have an edge) to the last item in the
list. This means the last item can never be part of a loop.

This is good news! From observation 2, we know that from any node we must
eventually end up in a loop. Therefore, by starting at the last node, we
have a way to find both a tail and a loop which are connected (by
observation 4). Then, by observation 3, we know that for a tail to join a
loop, two nodes must point to the same index i.e. have the same value.
Therefore, all we need to do is design an algorithm which finds both
these nodes. In other words, we need to find where the tail joins the
loop. Let’s do it!..

1. Find the loop. We could use a loop detection algorithm such as
Floyds Loop Detection algorithm. However, we know that our loop can
never be longer than , so if we just moved along our graph
times, starting from the last item, then we must end up in a loop.

2. Calculate the loop length. We will need this information for the
next few steps. To do this, keep moving around the loop, counting
each transition between nodes, until you end up where you started.

3. Set up two pointers on the tail. The second pointer must be one
loop length ahead of the end of the tail. Why? So that when we step
through the graph, the second pointer will come around the loop to
meet the first pointer at the node where the tail intersects with
the loop. This is explained further in the next step…

4. Move both pointers until they meet at the intersection. This
process is visualised below where 1 is the first pointer and 2 is

0
N − 1 0 N − 2

N − 1
N − 1

N N

NZIC Round 3 Solutions © NZOI 2018

the second pointer and the distance between them is the loop length
we calculated (see a.). As the pointers both move together to the
left, the stay loop length apart (see b.). Eventually, they will
arrive at the same value which is our duplicate! In this case, it
is 8.

As proven above, this method works for all cases including multiple
duplicates. The code shown below implements this algorithm in Python 3
and C++. We didn’t need to make any changes to the values in the list and
no extra storage space was required. Also, because we are only using
single loops which depend on , we use accesses of the list
(explained more below). Therefore, all of our requirements are met. Yay!

Space and Access Analysis
Additional memory storage is required for the first, second, and length
variable values. These storage requirements don’t change as increases
so we are using extra space.

Reading from the top of the code below… Step (1.) uses access to move
the first pointer. Step (2.) can’t use more than accesses to find the
loop length since a loop cannot be longer than the list. This means step
(3.) also requires a maximum of since the loop depends on length.
Finally, moving first and second around the loop as part of step (4.)
requires about accesses, since we access the list twice for each
iteration of the while loop. Overall, the maximum number of accesses
comes to around . Then, ignoring constants, we see the number of
accesses are proportional to and the number of accesses is thus .

N O(N)

N
O (1)

N
N

N

2N

5N
N O(N)

NZIC Round 3 Solutions © NZOI 2018

Python 3 Solution
N = int(input())
ids = [] # A list of Mindy's IDs
for i in range(N):
 ids.append(int(input()))

Create a pointer to the last list item
first = N - 1

(1.) Move the first pointer N times to ensure it gets trapped
into a loop
for _ in range(N):
 first = ids[first]

(2.) Calculate the length of the loop we are trapped in using a
second pointer
length = 1
second = ids[first]
while second != first:
 length += 1
 second = ids[second]

Now that we know the length of a loop, reset both pointers to
the end of the list again
first = second = N - 1

(3.) Move the second pointer ‘length’ ahead of the first
for _ in range(length):
 second = ids[second]

(4.) Move both pointers together until they meet up. The place
where they meet up will be the same as the place where the first
pointer enters the loop
while first != second:
 first = ids[first]
 second = ids[second]

Both first and second end up in the same place. However, the
first pointer entered the loop from outside whereas the second
pointer was already trapped in a loop. When the while above
exits, we know that first and second have the same value.
However, first and second came from different places.
Therefore, we can conclude that first and second are duplicates
print(first)

NZIC Round 3 Solutions © NZOI 2018

C++ Solution
#include <iostream>
int ids[1000]; // An array of Mindy's IDs

int main()
{
 int N;
 std::cin >> N;
 for (int i = 0; i < N; i++) {
 std::cin >> ids[i];
 }

 // Use pointers 'first' and 'second' to traverse the graph
 // starting at the last node
 int first = N - 1, second = 0;

 // Follow the chain N times to guarantee ending up in a loop
 for (int i = 0; i < N; i++) first = ids[first];

 // Determine loop length
 int length = 1;
 second = ids[first];
 while (second != first) {
 length++;
 second = ids[second];
 }

 // Restart from end node
 first = second = N - 1;

 // Move the second pointer to 'length' ahead of the first
 for (int i = 0; i < length; i++) second = ids[second];

 // Walk around until the second pointer meets with the first
 // at the entry to the loop
 while (first != second) {
 first = ids[first];
 second = ids[second];
 }

 // Both nodes contain the same ID, so this is one solution
 std::cout << first << std::endl;

 // O(N) time and accesses. O(1) extra space
}

NZIC Round 3 Solutions © NZOI 2018

	Intro
	Counting Threes Writeup
	NZIC Spaceships Writeup edit
	Magic Writeup
	Myrtle Rust Writeup
	NZIC Bad Dragon
	Mindy Writeup

